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The CRISPR RNA-guided endonuclease Cas9 cleaves double-
stranded DNA targets complementary to the RNA guide (1) 
(fig. S1), and has been harnessed for genome editing in eu-
karyotic cells (2). However, the widely used Cas9 from 
Streptococcus pyogenes (SpCas9) strictly recognizes an NGG 
sequence as the protospacer adjacent motif (PAM) (3), 
thereby restricting the targetable genomic loci. To address 
this limitation, structure-guided directed evolution ap-
proaches yielded several SpCas9 variants with altered PAM 
specificities, such as the SpCas9 VQR and VRER variants, 
which recognize the NGA and NGCG PAMs, respectively (4). 
In addition, Cas9 and Cas12a (also known as Cpf1) enzymes 
with distinct PAM specificities, such as Staphylococcus au-
reus Cas9 (SaCas9) (5), Acidaminococcus sp. Cas12a (As-
Cas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a) 
(6), have extended the targeting range in CRISPR-Cas-
mediated genome editing. 

To expand the targeting range of CRISPR-Cas9, we 
sought to engineer an SpCas9 variant with relaxed prefer-
ences for the third nucleobase of the PAM. Previous studies 
revealed that the second and third G nucleobases in the 
NGG PAM are recognized by Arg1333 and Arg1335 of 
SpCas9, respectively (7) (fig. S2). We thus hypothesized that 
the PAM constraint can be reduced by eliminating the base-

specific interaction between Arg1335 and the third G, and 
compensating for the loss of this base-specific interaction by 
introducing non-base-specific interactions with the PAM 
duplex. We first measured the in vitro cleavage activities of 
purified wild-type (WT) SpCas9 and the R1335A mutant to-
ward a target plasmid with the TGG PAM, and confirmed 
that, whereas WT SpCas9 efficiently cleaves the TGG target, 
R1335A has almost no activity (fig. S3, A to C). 

We next examined whether the R1335A activity is re-
stored by the substitution of residues surrounding the PAM 
duplex, and found that the replacements of Leu1111, Gly1218, 
Ala1322 and Thr1337 with arginine partially restored the 
activity of the R1335A mutant (fig. S3, A to C). Furthermore, 
the R1335A/L1111R/G1218R/A1322R/T1337R variant (re-
ferred to as ARRRR) efficiently cleaved the TGG target (fig. 
S3, A to C). However, the cleavage kinetics of ARRRR was 
slower than that of WT SpCas9 (fig. S3, D and E). In the 
previously reported VQR and VRER variants, the D1135V 
mutation provides interactions with the sugar-phosphate 
backbone of the PAM duplex (8, 9). In addition, molecular 
modeling suggested that the E1219F mutation forms hydro-
phobic interactions with the ribose moiety of the second G, 
and that the R1335V mutation stabilizes Arg1333 and 
Phe1219 (E1219F) (fig. S3F). Indeed, the addition of the 
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The RNA-guided endonuclease Cas9 cleaves its target DNA and is a powerful genome-editing tool. 
However, the widely used Streptococcus pyogenes Cas9 enzyme (SpCas9) requires an NGG protospacer 
adjacent motif (PAM) for target recognition, thereby restricting the targetable genomic loci. Here, we 
report a rationally engineered SpCas9 variant (SpCas9-NG) that can recognize relaxed NG PAMs. The 
crystal structure revealed that the loss of the base-specific interaction with the third G is compensated by 
newly introduced non-base-specific interactions, enabling the NG PAM recognition. We showed that 
SpCas9-NG induces indels at endogenous target sites bearing NG PAMs in human cells. Furthermore, we 
found that the fusion of SpCas9-NG and the activation-induced cytidine deaminase (AID) mediates the C-
to-T conversion at target sites with NG PAMs in human cells. 
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D1135V, E1219F and R1335V mutations enhanced the cleav-
age activity (fig. S3, D and E). We designated the 
R1335V/L1111R/D1135V/G1218R/E1219F/A1322R/T1337R var-
iant as VRVRFRR. 

We next examined the cleavage activities of VRVRFRR 
toward the target plasmid with TGN PAMs. As compared to 
WT SpCas9, VRVRFRR slowly but more efficiently cleaved 
the TGA, TGT and TGC targets (Fig. 1, A to C, and fig. S4). 
Although VRVRFRR is less active than WT SpCas9 and 
SaCas9, its cleavage activity was comparable to those of As-
Cas12a and LbCas12a (5, 6) (fig. S5). Using an in vitro PAM 
identification assay (10), we confirmed that whereas WT 
SpCas9 is specific to NGG PAMs, VRVRFRR preferentially 
recognizes NG PAMs (Fig. 1D and fig. S6). Although the 
PAM identification assay revealed that VRVRFRR slightly 
recognizes NAN PAMs (Fig. 1D), in vitro cleavage experi-
ments demonstrated that VRVRFRR is less active toward 
TAN PAMs relative to TGN PAMs (fig. S7). Thus, we con-
cluded that VRVRFRR recognizes a relaxed PAM, and refer 
to this variant as SpCas9-NG, as it has increased activity on 
NGH PAMs, albeit with reduced relative activity on NGC. 

We compared SpCas9-NG with the xCas9 enzyme (an 
SpCas9 variant with the A262T/R324L/S409I/E480K/ 
E543D/M694I/E1219V mutations), which was engineered via 
directed evolution and recognizes NG PAMs (11) (fig. S8). 
We measured their in vitro cleavage activities toward the 
target plasmid with the TGN PAMs. Under our assay condi-
tions (50 nM Cas9), xCas9 showed almost no activities to-
ward the TGA, TGT and TGC targets, while it cleaved the 
TGG target with lower efficiency as compared to that of 
SpCas9-NG (Fig. 1, A to C and E, and fig. S9A). At a higher 
concentration (200 nM Cas9), xCas9 cleaved the TGA, TGT 
and TGC targets (fig. S9, D and G); nonetheless, the cleavage 
kinetics of xCas9 was slower than that of SpCas9-NG (fig. 
S9, C, D, F, and G), and the cleavage activities of xCas9 to-
ward the TGT and TGA/TGC targets were comparable to or 
lower than that of WT SpCas9 toward the non-canonical 
TGA target, respectively (fig. S9, B, D, E, and G). These re-
sults demonstrated that SpCas9-NG outperforms xCas9 in 
recognizing NGH PAMs in vitro. 

To clarify the NG PAM recognition mechanism, we de-
termined the 2.7 Å-resolution crystal structure of SpCas9-
NG in complex with an sgRNA and its target DNA contain-
ing the TGG PAM (fig. S10A and table S1). The second G in 
the PAM (dG2*) forms bidentate hydrogen bonds with 
Arg1333 (Fig. 2A), which is stabilized by Val1335 (R1335V). 
The third G (dG3*) forms a hydrogen bond with Arg1337 
(T1337R) (Fig. 2A), consistent with the preference of SpCas9-
NG for the third G (Fig. 1C). Arg1111 (L1111R), Val1135 
(D1135V) and Phe1219 (E1219F) interact with the sugar-
phosphate backbone of the PAM duplex, while Arg1218 
(G1218R) does not directly interact with the DNA backbone 

(Fig. 2B). A structural comparison with the SpCas9 R-loop 
complex (12) suggested that Arg1322 (A1322R) interacts with 
the non-target DNA strand (fig. S10B). 

To assess the activity of SpCas9-NG in mammalian cells, 
we next measured the indel formation induced by WT 
SpCas9, SpCas9-NG and xCas9 at 69 endogenous target sites 
with NGN PAMs in HEK293FT cells (table S2). As expected, 
WT SpCas9 induced indels predominately at the NGG sites, 
with some recognition of NGA sites (Fig. 3, A and B). WT 
SpCas9 achieved >20% indel at NGG (17 out of 17 sites) and 
NGA sites (3 out of 19 sites), but not NGT (0 out of 18 sites) 
and NGC (0 out of 15 sites) sites (Fig. 3, A and B). In con-
trast, SpCas9-NG edited NGA, NGT and NGG sites, with 
lower activity at NGC (Fig. 3, A and B), consistent with the 
in vitro cleavage preference for the third D (not C) PAM nu-
cleotide (Fig. 1C). SpCas9-NG achieved >20% indel at 13 
NGG, 13 NGA, 15 NGT and 5 NGC sites (Fig. 3, A and B). 
xCas9 had lower editing efficiency at all of the NGH sites, as 
compared to SpCas9-NG (Fig. 3, A and B), consistent with 
our in vitro cleavage data (Fig. 1E). xCas9 induced >20% 
indel at 15 NGG, 5 NGA and 4 NGT, but none at NGC sites 
(Fig. 3, A and B). 

Using GUIDE-seq (13), we examined the specificity of 
WT SpCas9 and SpCas9-NG in human cells at two previous-
ly characterized target sites (EMX1 and VEGFA). We found 
that WT SpCas9 and SpCas9-NG have comparable numbers 
of off-target sites for the EMX1 target, and that the high-
fidelity mutations in eSpCas9(1.1) (K848A/K1003A/R1060A) 
(14) substantially reduced the off-target cleavage by SpCas9-
NG (Fig. 3C and fig. S11). These results demonstrated that 
SpCas9-NG has cleavage specificity comparable to that of 
WT SpCas9, and that its specificity can be enhanced by the 
high-fidelity mutations. As expected, SpCas9-NG had a dif-
ferent off-target profile with off-target sites harboring NGH 
PAMs (fig. S11), further confirming the relaxed PAM recog-
nition. 

The nuclease-inactive version of SpCas9 can be applied 
to numerous technologies, such as base editing (15, 16). We 
examined whether the SpCas9-NG D10A nickase fused to 
the activation-induced cytidine deaminase (nSpCas9-NG–
AID, referred to as Target-AID-NG) mediates C-to-T conver-
sion at 32 endogenous target sites with NG PAMs in human 
cells (table S3). nSpCas9–AID (Target-AID) efficiently in-
duced C-to-T conversion at the NGG sites, with lower activi-
ty at NGA sites and no activity at NGT/NGC sites (Fig. 4A 
and figs. S12A and S13). In contrast, Target-AID-NG showed 
base-editing activity toward all PAMs assessed, albeit with 
lower efficiency at NGC sites (Fig. 4A and figs. S12A and 
S13), consistent with the indel data (Fig. 3A). In addition, 
Target-AID-NG showed higher base-editing efficiencies than 
the xCas9 D10A nickase fused to the APOBEC1 cytidine de-
aminase (xCas9–BE4) at most of the tested poly-C-
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containing on-target sites (Fig. 4B and figs. S12B and S13). 
These results demonstrate that the catalytically inactive ver-
sion of SpCas9-NG can serve as a useful RNA-guided DNA 
targeting platform. 

In this study, we engineered an SpCas9-NG variant with 
an increased targeting range (fig. S14). Nonetheless, the 
cleavage activity of SpCas9-NG is lower than that of WT 
SpCas9 at NGG sites, and SpCas9-NG is less active at NGC 
sites relative to NGD sites. Thus, it will be important to im-
prove the activity of SpCas9-NG by further molecular engi-
neering. Overall, the rationally designed SpCas9-NG and its 
high-fidelity variants can serve as useful genome-editing 
tools with increased versatility across genomes. 
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Fig. 1. In vitro cleavage activity. (A) SDS-PAGE analysis of WT SpCas9, SpCas9-NG and xCas9. (B, C, and E) In vitro 
DNA cleavage activities of WT SpCas9 (B), SpCas9-NG (C) and xCas9 (E) toward the TGN PAM targets. Data are 
means ± s.d. (n = 3). (D) PAM preference of SpCas9-NG. 
 

Fig. 2. Crystal structure of SpCas9-NG. (A and B) Recognition of the PAM duplex by SpCas9-NG. 
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Fig. 3. Gene editing in human cells. (A) Indel formation efficiencies of WT SpCas9, SpCas9-NG and xCas9 at the 69 
endogenous target sites in HEK293FT cells. Data are means ± s.d. (n = 3). (B) Summary of the editing efficiencies of 
SpCas9, SpCas9-NG and xCas9. Medians and first and third quartiles are shown. (C) Specificities of SpCas9 (WT), 
SpCas9-NG (NG), and the high-fidelity versions of SpCas9 (ES) and SpCas9-NG (NG-ES). The off-target cleavages 
were evaluated by GUIDE-seq. 
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Fig. 4. Base editing in human cells. (A and B) C-to-T conversion efficiencies at the 20 
endogenous target sites (Target-AID and Target-AID-NG) (A) and at the 12 poly-C-containing 
target sites (Target-AID, Target-AID-NG and xCas9-BE4) (B) in HEK293T cells. The experiments 
were performed at least twice, and similar results were obtained. 
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