
that are different from Middle East. Although
changes in human population density, climate
conditions, and social factors may contribute to
the spread of MERS-CoVs in other regions, the
prevention of transmission at the animal/human
interface is likely to be the most efficient measure
to contain the threat from this virus.
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GENOME EDITING

Rationally engineered Cas9 nucleases
with improved specificity
Ian M. Slaymaker,1,2,3,4* Linyi Gao,1,4* Bernd Zetsche,1,2,3,4 David A. Scott,1,2,3,4

Winston X. Yan,1,5,6 Feng Zhang1,2,3,4†

The RNA-guided endonuclease Cas9 is a versatile genome-editing tool with a broad range of
applications from therapeutics to functional annotation of genes. Cas9 creates double-strand
breaks (DSBs) at targeted genomic loci complementary to a short RNA guide. However,
Cas9 can cleave off-target sites that are not fully complementary to the guide, which poses a
major challenge for genome editing. Here, we use structure-guided protein engineering to
improve the specificity of Streptococcus pyogenes Cas9 (SpCas9). Using targeted deep
sequencing and unbiased whole-genome off-target analysis to assess Cas9-mediated DNA
cleavage in human cells, we demonstrate that “enhanced specificity” SpCas9 (eSpCas9)
variants reduce off-target effects and maintain robust on-target cleavage. Thus, eSpCas9
could be broadly useful for genome-editing applications requiring a high level of specificity.

T
he RNA-guided endonuclease Cas9 frommi-
crobial clustered regularly interspaced short
palindromic repeat (CRISPR)–Cas adaptive
immune systems is a powerful tool for ge-
nome editing in eukaryotic cells (1, 2). How-

ever, the nuclease activity of Cas9 can be triggered
even when there is imperfect complementarity
between the RNA guide sequence and an off-
target genomic site, particularly if mismatches
are distal to the protospacer adjacent motif (PAM),
a short stretch of nucleotides required for target
selection (3, 4). These off-target effects pose a chal-
lenge for genome-editing applications. Here, we
report the structure-guided engineering of Strep-
tococcus pyogenes Cas9 (SpCas9) to improve its
DNA targeting specificity.
Several strategies to enhance Cas9 specific-

ity have been reported, including reducing the
amount of active Cas9 in the cell (3, 5, 6), using
Cas9 nickase mutants to create a pair of juxta-
posed single-stranded DNA nicks (7, 8), truncat-
ing the guide sequence at the 5′ end (9), and
using a pair of catalytically inactive Cas9 nucle-
ases, each fused to a FokI nuclease domain (10, 11).
Although each of these approaches reduces off-
target mutagenesis, they have a number of limita-
tions: Reducing the amount of Cas9 can decrease
on-target cleavage efficiency, double nicking re-
quires the concurrent delivery of two single-guide
RNAs (sgRNAs), and truncated guides can in-
crease indel formation at some off-target loci and
reduce the number of target sites in the genome
(12, 13).

Cas9-mediated DNA cleavage is dependent on
DNA strand separation (14, 15). Mismatches be-
tween the sgRNA and its DNA target in the first 8
to 12 PAM-proximal nucleotides can eliminate
nuclease activity; however, this nuclease activity
can be restored by introducing a DNA:DNAmis-
match at that location (3, 16–19). We hypothe-
sized that nuclease activity is activated by strand
separation and reasoned that by attenuating the
helicase activity of Cas9, mismatches between
the sgRNA and target DNA are less energetically
favorable, resulting in reduced cleavage activity
at off-target sites (fig. S1).
The crystal structure of SpCas9 in complex with

guide RNA and target DNA (14, 15) provides a
basis to improve specificity through rational
engineering. The structure reveals a positively
charged groove, positioned between the HNH,
RuvC, and PAM-interacting domains in SpCas9,
that is likely to be involved in stabilizing the
nontarget strand of the target DNA (Fig. 1, A and
B, and fig. S2). We hypothesized that neutraliza-
tion of positively charged residues within this
nontarget strand groove (nt-groove) could weaken
nontarget strand binding and encourage rehybrid-
ization between the target and nontarget DNA
strands, thereby requiringmore stringentWatson-
Crick base pairing between the RNA guide and the
target DNA strand.
To test this hypothesis, we generated SpCas9

mutants consisting of individual alanine substi-
tutions at 31 positively charged residues within
the nt-groove and assessed changes to genome-
editing specificity (Fig. 2A; fig. S3, A and B; and
fig. S4). Single amino acid mutants were tested
for specificity by targeting them to the EMX1(1)
target site in human embryonic kidney (HEK)
cells using a previously validated guide sequence;
indel formationwas assessed at the on-target site
and three known genomic off-target (OT) sites
(3, 4). Five of the 31 single amino acid mutants
reduced activity at all three off-target sites by a
factor of at least 10 comparedwithwild-type (WT)
SpCas9 while maintaining on-target cleavage
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efficiency, and six others improved specificity by
a factor of 2 to 5. These mutants also exhibited
improved specificity when tested on a second
locus, VEGFA(1) (Fig. 2B).
Although some single amino acid mutants

were more specific than WT SpCas9 when tar-
geting EMX1(1) and VEGFA(1), off-target indels
were still detectable (~0.5%) (Fig. 2B). To further
improve specificity, we performed combina-
torial mutagenesis using the top single amino
acid mutants identified in the initial screen. Eight
out of 34 combination mutants retained wild-
type on-target activity and displayed undetec-

table off-target indel levels at EMX1(1) OT1,
VEGFA(1) OT1, and VEGFA(1) OT2 (Fig. 2C and
fig. S3, C and D).
To ensure that the observed decrease in off-

target activity was not accompanied by reduced
on-target activity, we measured on-target indel
formation at 10 target sites in three genomic loci
using the top 14 mutants (fig. S5) and ranked
these based on a combination of preserved on-
target activity and decreased off-target activity.
We identified three mutants with both high ef-
ficiency (WT levels of on-target indel formation)
and specificity SpCas9 (K855A), SpCas9 (K810A/

K1003A/R1060A) [also referred to as eSpCas9
(1.0)], and SpCas9 (K848A/K1003A/R1060A) [also
referred to as eSpCas9(1.1)]. These three variants
were selected for further analysis.
We expanded this assay to assess whether

SpCas9(K855A), eSpCas9(1.0), and eSpCas9(1.1)
broadly retained efficient nuclease activity, mea-
suring on-target indel generation at 24 target sites
spanning 10 genomic loci (Fig. 3A). All three mu-
tants generated similar indel levels as WT SpCas9
with the majority of target sites (Fig. 3B). Mutants
were expressed equivalently or at higher levels
thanWT SpCas9 based on aWestern blot (Fig. 3C),
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Fig. 1. Structure-guided mutagenesis improves specificity of SpCas9.
(A) A model of Cas9 unwinding highlighting locations of charge on DNA and
the nt-groove. The nt-groove between the RuvC (teal) and HNH (magenta)
domains stabilizes DNA unwinding through nonspecific DNA interactions
with the noncomplementary strand. RNA:cDNA and Cas9:ncDNA inter-

actions drive DNA unwinding in competition against cDNA:ncDNA rehybrid-
ization. (B) A crystal structure of SpCas9 (Protein Data Bank ID 4UN3) showing
the nt-groove situated between theHNH (magenta) andRuvC (teal) domains.
The nontarget DNA strand (red) was manually modeled into the nt-groove
(inset).
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formation for mutants. (C) Western blot
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indicating that improvements in specificity were
not due to decreased protein expression levels.
We compared the specificity of the threemutants

toWT SpCas9with truncated guide sequences [18
nucleotides for EMX1(1) and 17 nucleotides for
VEGFA(1)], which have been shown to reduce
off-target indel formation (12) (fig. S6). When
using full-length (20 nucleotides) guides, all three
mutants reduced cleavage at all off-target sites
assessed compared with WT spCas9. Specifically,
eSpCas9(1.0) and eSpCas9(1.1) with 20-nucleotide
RNA guides eliminated cleavage at 22 out of 24
off-target sites (<0.2% indel). In contrast, WT
SpCas9 with truncated guides eliminated 14 out
of 24 sites but also increased off-target activity at
five sites compared with WT SpCas9 with 20-
nucleotide guides.
To further understand the tolerance SpCas9

(K855A), eSpCas9(1.0), and eSpCas9(1.1) for mis-
matched target sites, we systematically mutated
the VEGFA(1) guide sequence to introduce single-
and double-base mismatches at different posi-

tions (Fig. 4, A to C). Compared withWT SpCas9,
all three mutants induced lower levels of indels
with mismatched guides. Of note, eSpCas9(1.0)
and eSpCas9(1.1) induced lower indel levels even
with single-base mismatches located outside of
the 7- to 12–base pair seed sequence. Given that we
did not observe any difference between eSpCas9(1.0)
and eSpCas9(1.1) in terms of specificity, we selected
SpCas9(K855A) and eSpCas9(1.1) for further
analysis based on on-target efficiency.
We assessed the genome-wide editing speci-

ficity of SpCas9(K855A) and eSpCas9(1.1) using
BLESS (direct in situ breaks labeling, enrichment
on streptavidin and next-generation sequencing)
(20, 21), which quantifies DNA double-stranded
breaks (DSBs) across the genome (fig. S7A), for
both the EMX1(1) and VEGFA(1) targets for both
mutants and compared these results toWTSpCas9.
We used a previously established computational
pipeline for distinguishing Cas9-induced DSBs
from background DSBs (21) (fig. S7B). Both SpCas9
(K855A) and eSpCas9(1.1) exhibited a genome-wide

reduction in off-target cleavage and did not gen-
erate any new off-target sites (Fig. 5, A to D).
These findings also provide insight into the

mechanism of Cas9 targeting and nuclease ac-
tivity. We propose that off-target cutting occurs
when the strength of Cas9 binding to the non-
target DNA strand exceeds forces of DNA rehy-
bridization. Consistent with this model, mutations
designed to weaken interactions between Cas9
and thenoncomplementaryDNA (ncDNA) strand
led to a substantial improvement in specificity.
The model also suggests that, conversely, speci-
ficity can be decreased by strengthening the inter-
actions between Cas9 and the nontarget strand.
Consistentwith this hypothesis, we generated two
mutants, S845K and L847R, each of which ex-
hibited decreased specificity (fig. S8). Similar
strategies described in this study can also be suc-
cessfully applied to other Cas9 family proteins,
such as Staphylococcus aureus Cas9 (SaCas9)
(fig. S9), to engineer nucleases with improved
specificity.
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Wehavedemonstrated through structure-guided
design that neutralization of positive charges
in the nt-groove can dramatically decrease off-
target indel formationwhile preserving on-target
activity. These data show that eSpCas9(1.1) can
be used to increase the specificity of genome-
editing applications. Future structure-guided inter-
rogation of Cas9 binding and cleavage mechanism
will likely enable further optimization of the
CRISPR-Cas9 genome-editing toolbox.
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PROTEIN TRANSLOCATION

Structure of the Sec61 channel
opened by a signal sequence
Rebecca M. Voorhees and Ramanujan S. Hegde*

Secreted and integral membrane proteins compose up to one-third of the biological
proteome. These proteins contain hydrophobic signals that direct their translocation
across or insertion into the lipid bilayer by the Sec61 protein–conducting channel.
The molecular basis of how hydrophobic signals within a nascent polypeptide trigger
channel opening is not understood. Here, we used cryo–electron microscopy to determine
the structure of an active Sec61 channel that has been opened by a signal sequence.
The signal supplants helix 2 of Sec61a, which triggers a rotation that opens the central
pore both axially across the membrane and laterally toward the lipid bilayer. Comparisons
with structures of Sec61 in other states suggest a pathway for how hydrophobic signals
engage the channel to gain access to the lipid bilayer.

T
he universally conserved Sec complex forms
a gated protein translocation channel at the
eukaryotic endoplasmic reticulum (ER) and
bacterial plasmamembrane (1). The central
component of this channel, SecY in bacte-

ria and Sec61a in eukaryotes, contains 10 trans-
membrane (TM)helices arranged around a central
pore (2). Two single-TM subunits in eukaryotes,
Sec61b and Sec61g, are peripheral to Sec61a. The
central pore in the inactive Sec complex is occluded
by a short “plug” helix that must be displaced
to allow translocation. The interface where TM
helices 2 and 3 contact helices 7 and 8 defines a
“lateral gate” for membrane access of polypep-
tides (1–3).
Crystal structures of the Sec complex (2, 4–6)

lack a translocating polypeptide and likely rep-
resent a range of inactive states. Depending on
crystal contacts or translocation partners, the lat-
eral gate and plug are in various states of open-
ing and displacement. However, the biological
relevance of these channel conformations has
been difficult to interpret without awell-resolved
and matched active structure. Previous structures
of translocation or insertion intermediates of the
ribosome-Sec complexdeterminedbycryo–electron
microscopy (cryo-EM) were of moderate resolu-
tion (7–9), contained heterogeneous substrates
(9), required artificial stabilization (8), or were
at an uncertain stage of insertion (7). Although
these earlier structures provided the first views
of substrate-induced structural changes consistent
with lateral gate opening, the data could not
clearly resolve individual Sec61 TM helices or the
nature of their interactions with the signal. Thus,
a molecular understanding of how substrates
open the channel for translocation or insertion
is incomplete.
We devised a strategy to tag and purify the

canine ribosome-Sec61 complex engaged by the
first 86 residues of the secretory protein prepro-

lactin (fig. S1). Translocation, protease-protection,
and photo–cross-linking experiments verified that,
like thewell-characterized native 86-residue inter-
mediate (10–15), our tagged complex represents
a functional translocation intermediate engaged
by Sec61 (figs. S2 to S4). The nascent polypeptide
remains engaged with Sec61 during and after
purification (fig. S4), which makes it suitable
for structure determination by single-particle
cryo-EM.
The structure of this engaged ribosome-Sec61

complex was reconstructed from 101,339 particles
to an overall resolution of 3.6 Å (figs. S5 and S6
and table S1). The local resolution of the Sec61
channel ranged from ~ 3.5 Å near the ribosome
to ~7.0 Å at the lumenal loops. Most TM helices
were at ~4.5 to 5.5 Å resolution (fig. S6), which
revealed clear helical pitch and many bulky side
chains in sharpened maps (fig. S7). All 12 TM
helices of the Sec61 complex could be unambig-
uously assigned, leaving a single helix we ascribed
to the signal sequence (Fig. 1, A andB, and fig. S8).
Density visible throughout the ribosomal exit tun-
nel and in parts of the Sec61 channel (Fig. 1C) sug-
gests a looped configuration for the nascent chain,
consistent with earlier cross-linking studies (11).
The well-resolved structure of a biochemically

validated early translocation intermediate per-
mitted detailed comparisons with other Sec61
states to gain insights into the conformational
changes accompanying channel opening. A previ-
ous cryo-EM structure of the porcine ribosome-
Sec61 complex lacking a nascent polypeptide (9)
represents a “primed” state preceding nascent
chain insertion. Relative to this primed structure,
the engaged channel is open laterally toward the
lipid bilayer and axially across the membrane
(Fig. 2). The ribosome-Sec61 interaction remains
fixed, with only minor movements of the asso-
ciated Sec61g and TM helices 6, 7, 8, and 9 of
Sec61a. The other seven TM helices of the Sec61
complex rotate as a rigid body by ~22° (Fig. 2A
and movies S1 and S2), which creates space be-
tween helices 2 and 7 for intercalation of the sig-
nal peptide (Fig. 2B). Notably, cryo-tomography
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