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Introduction: Variation in an individual’s response to environmental factors is likely to infl uence 
susceptibility to complex human diseases. The genetic basis of such variation is poorly understood. 
Here, we identify natural genetic variants that underlie variation in the host innate immune response 
to infection and analyze the mechanisms by which such variants alter these responses.

Methods: We derived dendritic cells (DCs) from peripheral blood monocytes of healthy individu-
als (295 Caucasians, 122 African Americans, 117 East Asians) and stimulated them with Escherichia 

coli lipopolysaccharide (LPS), infl uenza virus, or the cytokine interferon-β (IFN-β) to generate 1598 
transcriptional profi les. We genotyped each of these individuals at sites of common genetic variation 
and identifi ed the genetic variants that best explain variation in gene expression and gene induction 
between individuals. We then tested mechanistic predictions from these associations using synthetic 
promoter constructs and genome engineering.

Results: We identifi ed 264 loci containing genetic variants associated with variation in absolute gene 
expression in human DCs, of which 121 loci were associated with variation in the induction of gene 
expression by one or more stimuli. Fine-mapping identifi ed candidate causal single-nucleotide poly-
morphisms (SNPs) associated with expression variance, and deeper functional experiments localized 
three of these SNPs to the binding sites of stimulus-activated transcription factors. We also identifi ed a 
cis variant in the transcription factor, IRF7, associated in trans with the induction of a module of antivi-
ral genes in response to infl uenza infection. Of the identifi ed genetic variants, 35 were also associated 
with autoimmune or infectious disease loci found by genome-wide association studies.

Discussion: The genetic 
variants we uncover and 
the molecular basis for their 
action provide mechanistic 
explanations and principles 
for how the innate immune 
response to pathogens and 
cytokines varies across indi-
viduals. Our results also link 
disease-associated variants 
to specific immune path-
ways in DCs, which provides 
greater insight into mecha-
nisms underlying complex 
human phenotypes. Extend-
ing our approach to many 
immune cell types and path-
ways will provide a global 
map linking human genetic 
variants to specifi c immuno-
logical processes.
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Little is known about how human genetic variation affects the responses to environmental stimuli
in the context of complex diseases. Experimental and computational approaches were applied to
determine the effects of genetic variation on the induction of pathogen-responsive genes in human
dendritic cells. We identified 121 common genetic variants associated in cis with variation in
expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-b (IFN-b). We
localized and validated causal variants to binding sites of pathogen-activated STAT (signal
transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We
also identified a common variant in IRF7 that is associated in trans with type I IFN induction in
response to influenza infection. Our results reveal common alleles that explain interindividual
variation in pathogen sensing and provide functional annotation for genetic variants that alter
susceptibility to inflammatory diseases.

Susceptibility to complex diseases depends
on both genetic predisposition and expo-
sure to environmental factors, with inter-

actions between the two (G × E interactions)
likely contributing substantially to disease risk
(1, 2). However, the extent and mechanisms by
which common human genetic variants interact

with the environment remain poorly explored
and have been difficult to detect in clinical studies
(1, 3). Genetic analysis of molecular traits, such
as gene expression profiles, offers a promising
way to dissect the molecular mechanisms under-
lying G × E interactions. Expression quantita-
tive trait locus (eQTL) studies have been used
to map genetic variants contributing to variation
in gene expression, but have largely focused on
steady-state expression in humans (4, 5) and
thus have excluded G × E interactions. In model
organisms, differences in growth conditions or
treatment with various stimuli have revealed the
existence of response eQTLs (reQTLs) (6–9),
defined as QTLs associated with the change in
expression after stimulation. Here, we sought
to identify reQTLs in humans, to explain the
mechanism by which the environment inter-
acts with these variants, and to determine whether
these variants are associated with immune-mediated
diseases.

We used dendritic cells (DCs) of the innate
immune system as a model system for reQTL
studies, with physiological and clinical relevance.
DCs play a direct role in the host recognition of
pathogens using specialized sensors that engage
well-characterized signaling and transcriptional
networks. For example, bacterial lipopolysac-
charide (LPS) activates two distinct arms of the
Toll-like receptor 4 (TLR4) pathway, whereas
influenza infection primarily activates the RNA-
sensing TLRs (for example, TLR3) and the RIG-I–
like receptors (for example, RIG-I) (10). These,
in turn, lead to the translocation of transcription
factors (TFs) from the cytoplasm into the nu-

cleus to induce the expression of immune genes,
including interferon-b (IFN-b) secretion that en-
gages the type I IFN response pathway to induce
the expression of hundreds of antiviral effectors.
Genetic studies have associated common var-
iants near many genes in these pathways with
risk of different inflammatory diseases (11, 12).
DCs also play a critical role in the pathologic
immune responses underlying inflammatory dis-
eases (11–13), also reflected in recent genome-
wide association studies (GWAS) of several diseases
(14–17), especially inflammatory bowel disease (14).

Results

Assessing the Impact of Genetic Variation on
Pathogen Sensing in Primary Human DCs
We developed an integrated experimental and
computational pipeline (Fig. 1A) to identify
variability in human DC responses and associate
this variability with common genetic variants.
First, we optimized a high-throughput protocol
to isolate primary CD14+CD16lo monocytes from
human blood samples (fig. S1, A to F), differen-
tiate them into monocyte-derived DCs (MoDCs),
and stimulate them with three immunostimula-
tory agents (Fig. 1B): Escherichia coli LPS, in-
fluenza virus, or IFN-b (a cytokine induced by LPS
and influenza). Second, we collected genome-
wide transcript profiles from resting and stimulated
DCs from 30 healthy individuals and computa-
tionally identified a “signature” of 415 genes that
would be informative of variation in the response
in a larger cohort. Third, we generated 1598
transcriptional profiles [using an amplification-
free platform suitable for small cell numbers
(18)] from DCs isolated from 534 healthy indi-
viduals (295 Caucasians, 122 African Americans,
and 117 East Asians) (table S1) in four states:
resting, LPS-stimulated, influenza-infected, and
IFN-b–stimulated. Finally, we associated expres-
sion variation with genetic variation to identify
cis- and trans-eQTLs and reQTLs, and we in-
vestigated candidate reQTLs for their mechanism
of action.

Variability of Pathogen-Sensing Responses
Between Individuals
To assess the interindividual variability of DC
responses, we first profiled genome-wide expres-
sion using microarrays in resting, LPS-stimulated,
and influenza-infected MoDCs isolated from each
of 30 healthy individuals (18 Caucasians, 6 Asians,
and 6 African Americans). We found 1413 genes
that were regulated in LPS- or influenza-treated
cells [log2(fold change) >0.75 or <−1.5; false
discovery rate (FDR) < 0.01; fig. S2A and table
S2A; see table S2, B to I, for enriched biological
processes] at 5 and 10 hours, respectively (time
points selected to have maximal expression of
induced clusters) (fig. S1, B and C).

We quantified reproducibility in these re-
sponses by recalling 12 of the 30 donors 2 to
9 months after the first collection for MoDC
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isolations and profiling (table S1); we identified
genes whose expression interindividual variance
is significantly higher than their intraindividual
variance based on the serial replicates [taking
into account known covariates including gender,
age, and population and unknown factors using
surrogate variable analysis (19)]. Two hundred
twenty-two of the 1413 regulated genes (16%)
showed significantly higher (FDR < 0.1) inter-
than intraindividual variability, either in their ab-
solute expression or in the differential expression
(stimulated/baseline level) to at least one stimulus
(Fig. 2A and table S3). These results suggest that
there is consistent variation in these traits that
may have a genetic basis.

Expression Profiling of a Pathogen
Response Signature
Mapping the genetic basis of interindividual
variation in pathogen responses requires profil-
ing of DC gene expression in a larger cohort;
this poses a substantial technical challenge given
the limited numbers of primary cells and multi-
ple stimuli. Furthermore, the responses of DCs
to virus, bacterial ligands, and IFN are limited in
scope and do not encompass the entire genome.
We therefore defined a 415-gene signature set
(Fig. 2B and table S3) that could be monitored
in small numbers of cells using a sensitive mul-
tiplex RNA detection system (18), allowing us
to scale up our study. The signature consisted
of (i) all 222 of 1413 regulated genes with
greater inter- than intraindividual variability in
the microarray study; (ii) all 24 regulated genes
exhibiting greater inter- than intrapopulation

variability (FDR < 0.1) (table S3) in the micro-
array study; (iii) 76 genes comprising the known
components of the TLR4, TLR3, RIG-I, and
IFNAR pathways (Fig. 1B) (10, 20–22); (iv) 61
regulated genes that play key roles in the DC
response (for example, IFNB1 and IFITM3)
(22–24); (v) 28 regulated genes residing in loci
previously associated with autoimmune or in-
fectious diseases (25); and (vi) 35 control genes
including those that had among the lowest in-
terindividual variance in the microarray profiles.
This representative signature allowed us to mon-
itor genes with high interindividual variability,
as well as key components and responses of the
pathogen-sensing pathway.

We then generated 1598 transcriptional pro-
files, using the 415-gene signature, from MoDCs
isolated from 534 healthy individuals (and 37
serially collected replicates) in up to four conditions:
resting (528 individuals), LPS-stimulated (356),
influenza-infected (342), and IFN-b–stimulated
(284) (Fig. 2C; fig. S1, E and F; and table S1).
The IFN-b stimulus allowed us to partition genes
that were induced by both LPS and influenza
(cluster III) into those induced secondary to type
I IFN signaling (cluster IIIa) or by other mech-
anisms shared between these bacterial and viral
sensing pathways (cluster IIIb), such as nuclear
factor kB (NF-kB) or activating protein 1 (AP-1)
activation (Figs. 1B and 2C). The signature ex-
pression profiles clustered similarly to those from
the microarray analysis (Fig. 2C and fig. S2C)
and captured most of the variance in the genome-
wide profile [cross-validation, >0.99 ground-truth
Pearson correlation coefficient; fig. S2D (26)],

demonstrating the utility of the signature to cap-
ture the genome-wide response.

reQTLs That Modulate Cellular Responses
to Pathogens
Wemapped cis-eQTLs and cis-reQTLs by testing
for association between common single-nucleotide
polymorphisms (SNPs) (minor allele frequency >5%;
genotyped with Illumina HumanOmniExpress
BeadChip) and variation in either absolute tran-
script abundance (eQTL) or stimulation-induced
change in transcript abundance (reQTL) in a
nearby gene (in which the transcriptional start
site or stop codon is within 1 Mb of the SNP).
We pooled individuals from the three human
populations together and included covariates
and principal components to increase statistical
powerwhile avoiding systematic confounders such
as population structure and expression heteroge-
neity. We identified 264 genes with cis-eQTLs in
at least one condition (permutation FDR < 0.05)
(Fig. 3A; fig. S3, A to C; and table S4, A to D)
(27). Notably, 22 of 264 genes also associated
with additional independent cis-eQTLs after con-
ditioning on the top five most significant SNPs
in each cis-eQTL region (table S6 and fig. S3D)
(27), which reflects the complexity of the regu-
latory landscape around each gene.

We detected 121 cis-reQTLs (Fig. 3B and
table S4, E to G; permutation FDR < 0.05; 91%
internal reproducibility in at least two human
populations, table S5), the subset of genetic
variants that affect the induction of gene ex-
pression by LPS, influenza, or IFN-b. Of the 121
genes with cis-reQTLs, 7 associations were found
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Fig. 1. A strategy to identify gene-by-environment interactions in the
innate immune responses of primary human DCs. (A) Strategy used to
identify baseline and response eQTLs and reQTLs, consisting of five steps: (i) high-
throughput isolation and stimulation of primary human MoDCs from 560 healthy
individuals (dotted slices, male; solid-colored slices, female) collected as part of
the PhenoGenetic cohort; (ii) whole-genome gene expression measurements in a
subset of the cohort; (iii) selection of signature gene set, consisting of regulators
and regulated genes; (iv) digital multiplex gene expression measurements of
signature genes in the entire cohort; and (v) mapping of genetic variation to

expression variation. GM-CSF, granulocyte-macrophage colony-stimulating factor;
IL-4, interleukin-4. (B) Model of innate immune pathways activated by three
stimuli demonstrating their downstream relationships. LPS from E. coli engages
the TLR4 receptor; IFN-b engages the heterodimeric IFNAR receptor; influenza A/PR8
(DNS1) (“FLU”) engages the cytoplasmic TLR3 and RIG-I receptors. Receptor
engagement activates signal transduction cascades that regulate expression of
inflammatory genes, IFNs, and IFN-stimulated genes. IFNAR activation also
occurs during LPS and FLU stimulations because LPS and FLU both induce IFN
production, leading to activation of ISREs. JAK1, Janus kinase 1.
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only in the influenza condition (for example,
IFNA21; Fig. 3C and fig. S3B; meta-analysis, P <
1 × 10−5; permutation FDR = 0.02 to 0.03); 15
in both the LPS and influenza conditions (for
example, TEC; Fig. 3C and fig. S3B); and 57 in
all three stimulation conditions (for example,
ARL5B, SLFN5, and CLEC4F; Fig. 3, C to E,

and fig. S3B), likely reflecting activation of the
shared IFN-b pathway. We hypothesized that
causal variants driving cis-reQTLs alter the se-
quence of genomic elements that respond to TFs
downstream of the pathogen-sensing receptors
(Fig. 3F), and represent gene-by-environment
interactions.

To validate cis-reQTLs, we quantified allele-
specific expression for pan-stimulation–specific
associations in heterozygote individuals (Fig. 3,
D and E). This was feasible for a gene with an
exonic SNP (CLEC4F rs2075221) that was the
most significant reQTL SNP, and for a gene with
an exonic SNP (SLFN5 rs11651240) in linkage
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Fig. 2. Genome-wide expression profiles in MoDCs reveal response
phenotypes. (A) Coefficient of variation (CV) of gene expression between
30 different donors (“Interindividual CV”) plotted against CV of expression
within 12 serial replicate samples (“Intraindividual CV”) for each differ-
entially regulated (fold change >0.75 or <–1.5) gene after LPS or FLU
stimulation. Yellow (up-regulated) and purple (down-regulated) circles rep-
resent genes with significant (moderated t test, FDR < 0.1) inter- versus intra-
individual variation. (Right) log2(expression, microarray data) of CLEC4F in
baseline, LPS-stimulated, and FLU-infected MoDCs from 30 donors and 12
replicates, demonstrating example of a gene that shows significant (FDR <
0.01) inter- versus intraindividual variation after LPS and FLU stimulations but
not at baseline (fig. S2B). Standard error of replicate samples (n = 12) is
shown for each sample. (B) Pie chart of 415 signature genes selected for
Nanostring code set: 222 (49%) are regulated genes that showed sig-
nificant (mixed model variance components test, permutation FDR < 0.1)

inter- versus intraindividual variability; 61 (14%) are curated, regulated
genes with a known function in the innate immune response; 76 (17%)
are curated regulators in the TLR4, TLR3, RIG-I, and IFNAR pathways; 41
(9%) are control genes including low-variance genes, sex-specific genes, and
nonexpressed genes; 28 (6%) are regulated genes that were reported in
the regions of autoimmune and infectious disease GWAS; and 21 (5%)
are regulated genes that showed significant inter- versus intrapopulation
variability. (C) Gene expression heat map of the 415-gene signature in
MoDCs from the microarray study (30 individuals) and the Nanostring study
(534 individuals). Each row represents a gene; each column represents a
donor sample at baseline, stimulated with LPS, infected with FLU, or stimulated
with IFN-b. Rows were clustered by k-means clustering of Nanostring data set
with major clusters (I, II, IIIa, IIIb, and IV) labeled. Between the two heat
maps, each row was labeled with colored dashes corresponding to one of the
six categories described in (B).
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Fig. 3. Association analysis reveals cis-eQTLs and cis-reQTLs. (A and B)
Manhattan plot of cis-eQTLs (A) (baseline expression) and cis-reQTLs (B) (LPS-,
FLU-, and IFN-b–stimulated fold changes relative to baseline) showing −log10(P values)
(left y axis) and R2 values (right y axis) for all cis-SNPs, displayed on the x axis
with associated genes ordered by chromosomal location. (C) Box-whisker plots
showing expression [left; log2(nCounts), y axis] or fold change [right; log2
(fold), y axis] of DCBLD1, IFNA21, TEC, and ARL5B in resting, LPS-stimulated,
FLU-infected, and IFN-b–stimulated MoDCs as a function of genotype of the
respective cis-SNPs (x axis: rs27434, rs10964871, rs10938526, and rs11015435).
African Americans, Asians, and Europeans in this order are displayed as separate
box-whisker plots adjacent to each other in each condition. −Log10(P values) and
b statistics are displayed in top right corners. (D and E) Allelic imbalance analysis
of SLFN5 (D) and CLEC4F (E) in resting, LPS-stimulated, FLU-infected, and IFN-b–
stimulated MoDCs, showing the ratio of gene expression between the major and

minor alleles in heterozygote (rs11651240 for SLFN5, rs2075221 for CLEC4F)
cDNA samples [n = 8 in (D); n = 9 in (E)] normalized to the ratio in the
corresponding genomic DNA samples; significant deviation from 1.0 (dashed
line) is consistent with allelic imbalance. Data are from one experiment
representative of three (mean and SD shown). *P < 0.01, **P < 0.001, compared
to unstimulated cells (Student’s t test). On the right panels, box-whisker plots
showing expression [left; log2(nCounts), y axis] or fold change [right; log2(fold), y
axis] of SLFN5 (D) and CLEC4F (E) in resting, LPS-stimulated, FLU-infected, and
IFN-b–stimulated MoDCs as a function of genotype of the respective cis-
SNPs: rs11867191 and rs2075221. (F) Schematic showing the different
combinations of stimuli leading to significant cis-reQTLs, with the most
significant examples listed. Specificity to conditions was defined with M
value >0.9 taken as the inclusion criteria and M value <0.1 taken as the
exclusion criteria for each condition.
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disequilibriumwith themost significant reQTLSNP
(rs11867191, R2 = 0.501 CEPH, CEU). As pre-
dicted, transcripts derived from themajor andminor
alleles differed in expression after stimulation with
LPS (SLFN5:P< 0.001, t test;CLEC4F:P< 0.01);
influenza (SLFN5: P < 0.001; CLEC4F: P < 0.01);
or IFN-b (SLFN5: P < 0.001;CLEC4F:P < 0.001)
but not at baseline (Fig. 3, D and E).

Cis-reQTLs That Alter the Sequence
of TF Binding Sites
We hypothesized that the causal variants under-
lying cis-reQTLs functionally alter the chromo-
somal binding sites of TFs activated by one or
more stimuli. To fine map reQTLs, we performed a
trans-ethnic meta-analysis (28) of imputed variants
in each population (~10 M). We then examined
whether the most highly associated meta-reQTLs
overlap with TF binding sites identified in high-
throughput human chromatin immunoprecipi-
tation with massively parallel DNA sequencing
(ChIP-seq) data sets (for example, ENCODE) or

computationally predicted conserved regulatory
elements (29–31). We found substantial enrich-
ment (table S7) of known binding sites for TFs
from the signal transducer and activator of tran-
scription (STAT) family (TFs that are activated
downstream of type I IFN signaling). The most
significant enrichment over background was found
for STAT2 (116-fold, binomial P < 2.55 × 10−21)
and STAT1 (126-fold, binomial P < 2.98 × 10−13)
binding sites (derived from ChIP-seq in IFN-a–
stimulated K562 cells) within cis-eQTLs after
IFN-b–stimulation.

Among the 57 genes (for example, SLFN5,
CLEC4F, and ARL5B; Fig. 3F) with cis-reQTLs
in all three stimuli, we observed that the most
significant cis-reQTL in the (i) SLFN5 locus
(rs11080327) lies in an ENCODE ChIP-seq signal
(29) for STAT1 (Fig. 4, A to C); (ii) CLEC4F locus
(rs35856355) alters a commonly occurring cy-
tosine in a canonical IFN-stimulated response
element (ISRE) that is a target of IFN-activated
TFs (Fig. 4, B and C) (22, 30–32); and (iii)

ARL5B locus (rs2130531) changes a guanine in
the canonical ISRE motif (Fig. 4, B and C).
Additional cis-reQTLs that alter putative STAT
binding sites based on ChIP-seq data or pre-
dicted ISRE motifs include rs10086852 (PTK2B),
rs1981760 (NOD2), rs73023464 (C19ORF12),
rs1331717 (IFI44), and rs12064196 (IFI44) (Fig.
4A). Because STAT TFs are activated down-
stream of the type I IFN receptor (IFNAR) and
bind to ISRE motifs (Fig. 4A) (22), we hypoth-
esized that the SNPs in these sites are likely
causal SNPs within their respective cis-reQTL
regions.

Cis-reQTLs That Affect Differential Binding
of Stimulus-Activated TFs
To experimentally validate our predicted regulatory
mechanisms, we determined whether IFN-b–
activated TFs bind differentially at these SNPs.
Using radiolabeled 24- to 26-bp (base pair) double-
stranded DNA (dsDNA) probes in electropho-
retic mobility shift assays (EMSAs), we found
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Fig. 4. Functional fine-mapping and mechanism of cis-reQTLs. (A)
Pathway diagram of signal transduction cascade downstream of IFNAR ac-
tivation. Activation of receptor leads to downstream activation of JAK-STAT
cascade, leading to posttranslational activation of STAT and IRF TFs. (B)
LocusZoom plots showing the −log10(P values) of imputed cis-eQTLs ( y axis) in
the chromosomal regions (x axis) of SLFN5, CLEC4F, and ARL5B. The most
significant imputed SNPs in each locus are labeled. (C) Schematic representation
of alleles in the regions near the SLFN5, CLEC4F, and ARL5B genes that are in
STAT2 ChIP-seq binding sites or that perturb ISRE motifs (SNPs are shown as
vertical bars and in red letters). (D) EMSAs with 24- to 26-bp radiolabeled
dsDNA probes—containing a known ISRE motif control, a mutated ISRE motif
control, the CLEC4F rs35856355 major (C) or minor allele (A) sequences, or the
ARL5B rs2130531 major (G) or minor allele (A) sequences—incubated with

nuclear lysates from IFN-b–stimulatedMoDCs. On the right, supershift assays with
or without antibodies against IRF1, IRF9, and STAT2 (designated a-IRF-1, and so
on) with the CLEC4F rs35856355 major (C) probe are shown. (E) Luciferase
expression from reporter constructs transfected into HEK293 cells that were left
unstimulated or were stimulated with IFN-b (1000 U/ml) for 21 hours. Sequences
(150 to 200 bp) from the major and minor haplotypes of the SLFN5, CLEC4F, and
ARL5B regions were subcloned 5′ of a minimal promoter and firefly luciferase
gene. Firefly luciferase expression was normalized to Renilla luciferase expression
expressed from cotransfected plasmid. (F) Fold change log2(IFN-b stim/unstim) of
signature genes in wild-type (wt) HEK293 cells (rs11080327A/G), plotted against
fold change in CRISPR-converted (rs11080327G/G) HEK293 cells. Data are from
one experiment representative of three [mean and SD shown in (E)]. *P < 0.05,
**P < 0.01, compared to unstimulated cells (Student’s t test).
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that probes encompassing the major alleles
(rs35856355C and rs2130531G, which are asso-
ciated with increased expression in CLEC4F and
ARL5B), but not the minor alleles, shifted after
incubation with IFN-b–stimulated MoDC nuclear
lysates (Fig. 4D). Consistently, nonradiolabeled
major, but not minor, allele probes competed for
binding to the IFN-b–stimulated nuclear fac-
tors (fig. S4A). By incubating with antibodies
to TFs known to bind the ISRE element, we found
that IRF1 (IFN-regulatory factor 1) supershifted
the low–molecular weight band and STAT2 and
IRF9 supershifted the higher–molecular weight
band, consistent with the known complex of these
latter two proteins (32) (Fig. 4D). These results
suggested that the SNPs in CLEC4F and ARL5B
alter the binding of IFN-activated IRF1, STAT2,
and IRF9 TFs.

To directly test the functional effects of the
SNPs, we cloned 150- to 200-bp genomic regions
surrounding rs11080327 (SLFN5), rs35856355
(CLEC4F), and rs2130531 (ARL5B) upstream of

a luciferase reporter driven by a minimal pro-
moter (Fig. 4E). For each region, we created two
constructs that differ only at the respective SNPs.
Because almost all cell types respond to IFN-b
stimulation, we transfected the reporter constructs
into human embryonic kidney 293 (HEK293)
cells and stimulated the cells with IFN-b. Con-
sistent with our hypothesis, the constructs con-
taining the major alleles of rs11080327 (SLFN5),
rs35856355 (CLEC4F), and rs2130531 (ARL5B)
induced 11.6-, 2.1-, and 1.5-fold, respectively,
more luciferase production than the cognate con-
structs containing the minor alleles (t test, P <
0.001, P < 0.001, and P < 0.01, respectively) (Fig.
4E). Furthermore, mutation of motif-conserving
nucleotides across the CLEC4F ISRE motif re-
duced induction by IFN-b, whereas mutation of
nonconserved nucleotides did not (fig. S4B),
consistent with the ISRE consensus motif.

Finally, to further test (33) the functional-
ity of rs11080327—the SLFN5 variant with the
strongest functional effect—in its native chromo-

some, we directly edited the genome using the
CRISPR system (34, 35), converting the hetero-
zygous rs11080327A/G in HEK293 cells to a
homozygous rs11080327G/G (Fig. 4F and fig. S4C).
We then stimulated both native and CRISPR-
converted cells with IFN-b. The fold induction
of SLFN5 decreased from 3.64 in heterozygous
cells to 1.03 in the converted rs11080327 (G)
homozygotes, whereas the induction of other
genes was unaffected (Fig. 4F and fig. S4C, in-
dependent CRISPR construct).

The enrichment, EMSA, reporter assays, and
directed mutagenesis results suggest that we have
identified causal variants in some of these cis-
reQTL regions and demonstrate that the reQTLs
occur because of differential binding of stimulus-
activated TFs.

A Trans-eQTL That Also Associates
with IRF7 as a Cis-eQTL
We next attempted to detect cases where varia-
tion in gene expression is explained by distant
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Fig. 5. Trans-reQTL association at the IRF7 cis-regulatory locus. (A)
Diagram showing selected components of TLR4, TLR3, RIG-I, and IFNAR
pathways. Components with significant cis-eQTLs (permutation FDR < 0.05)
are shown in black (or red if they also have a trans-eQTL); components that do
not have significant cis-eQTLs are gray. (B) Manhattan plot showing the trans-
association of rs12805435 to all 415 genes on signature gene set in baseline,
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7 MARCH 2014 VOL 343 SCIENCE www.sciencemag.org1246980-6

RESEARCH ARTICLE



genetic variants acting in trans. We noted that cis-
eQTLs for regulator genes tend to have smaller
effect sizes and less significant P values than
those for regulated genes (fig. S3E). To decrease
the multiple testing burden of detecting trans-
associations, we restricted testing SNPs local
to genes on our gene signature set. A number of
these are cis-eQTLs associated with the expres-
sion of genes encoding regulators (for example,
TFs) in pathways that we stimulated (Fig. 5A).
Of these, rs12805435 was the most significant,
associating with the expression of the master
antiviral TF IRF7 in cis only after influenza, LPS,
or IFN-b stimulation (table S4, A to D). This SNP
associated with both the expression and induc-
tion of seven additional genes in trans (that is,
the transcriptional start site or stop codon is
located >1 Mb from the SNP) only after influ-
enza infection: NMI, IFNA4, IFNA10, IFNA13,
IFNA21, IFNA17, and IFNA5 (P < 6.26 × 10−5

in expression, P < 1.68 × 10−5 in differential
expression) (Fig. 5B and tables S8 to 10).

To test whether the trans-associated genes
are indeed targets of IRF7, we infected MoDCs

that overexpressed IRF7 or a control gene with
influenza virus, and found that IRF7 overexpres-
sion induced the expression of IFNA2, IFNA13,
and IFNA14 in influenza-infected cells (Fig. 5C).
In addition, in HEK293 cells, which normally ex-
press very low levels of IRF7, we overexpressed
IRF7 and observed induction of NMI, IFNA4,
IFNA10, IFNA13, IFNA14, and IFNA21 (Fig.
5D), suggesting that IRF7 is sufficient to drive
downstream expression. We have thus identified
a stimulus-specific cis-eQTL associated with IRF7
expression, which is also a trans-reQTL that un-
derlies the variability of IFN induction in re-
sponse to influenza infection in humans.

DC reQTLs That Overlap with Autoimmune
and Infectious Disease SNPs from GWAS
We examined the subset of loci associated in
GWAS with inflammatory disorders. We first
extended an analysis of Crohn’s disease in which
loci are enriched for genes specifically expressed
in DCs (12, 14) to multiple sclerosis, celiac dis-
ease, psoriasis, and leprosy (fig. S5A). We found
that genes nearest to the susceptibility loci for

these diseases were enriched not only in DC-
specific genes but also in genes induced by LPS
and/or influenza (fig. S5B), which suggests that
some of the GWAS loci modulate the expression
of the corresponding genes in activated DCs.

Supporting this hypothesis, 15 cis-reQTLs and
23 cis-eQTLs that were not significant at base-
line but only became significant after stimula-
tion are the same SNPs previously identified in
GWAS of autoimmune and infectious diseases,
including Crohn’s disease, multiple sclerosis,
celiac disease, psoriasis, and leprosy (25) (Fig. 6,
A and B, and table S11). These include NOD2
with leprosy (rs9302752), IRF7 with systemic
lupus erythematosus (SLE) (rs4963128), TRAF1
with rheumatoid arthritis (rs881375), and CREM
with Crohn’s disease (rs12242110) and ulcerative
colitis (rs4246905). For example, rs9302752—a
SNP previously associated with susceptibility to
leprosy (17)—was associated in our study with the
absolute and fold expression of NOD2 under IFN-b
stimulation (P = 3.49 × 10−25) but not at baseline
(Fig. 6A and table S11); NOD2 plays a known
role in pathogen sensing and possibly mycobacterial
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Fig. 6. Autoimmune and infectious disease–associated SNPs are cis-
eQTLs and cis-reQTLs. (A) Expression [log2(nCounts)] of NOD2 in resting
and IFN-b–stimulated MoDCs from 184 Caucasians as a function of genotype
of the leprosy GWAS SNP, rs9302752 (left). (Right) expression [log2(nCounts)]
of IRF7 in resting and IFN-b–stimulated MoDCs from 184 Caucasians as a

function of genotype of the SLE GWAS SNP, rs4963128. (B) Plot showing
overlap of genome-wide significant (P < 5 × 10−8) GWAS SNPs with cis-eQTLs
and reQTLs in MoDCs, with clinical phenotypes connected to corresponding
gene expression phenotypes by lines. Orange circles represent cis-reQTLs
(P < 10−7); yellow circles represent stimulus-specific cis-eQTLs (P < 10−7).
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immunity (36). Similarly, rs4963128—a variant as-
sociated with SLE (37)—was associated in our
study with the expression of IRF7 after IFN-b
stimulation (P = 1.10 × 10−16) but not at base-
line (Fig. 6A), in line with the importance of
type I IFN responses in SLE pathogenesis (38).
We note that rs4963128 is on the same haplo-
type (R2 = 0.69, D′ = 0.94) as the IRF7 SNP
rs12805435 that is associated with the trans-reQTL
effect described above. These results suggest a
role for innate immune pathogen-sensing path-
ways in the pathogenesis of these inflammatory
disorders.

Discussion
Although genetic association studies have iden-
tified alleles that confer disease risk, little is known
about how these genetic variants contribute to
disease through their effects on specific biolog-
ical processes and their interaction with envi-
ronmental stimuli. We addressed this question
by quantifying the DC response to pathogens
in a set of genotyped individuals, and then lever-
aged our understanding of these pathways to ex-
plain the mechanisms underlying the observed
genotype-environment-phenotype interactions.

Many of the QTL associations we identified
are only detectable in the presence of specific
stimuli, which underscores the need to activate
cells to capture additional genotype-phenotype
relations (39–41). Furthermore, few eQTL studies
have definitively identified the causal variants
underlying the associations. By measuring var-
iability in hundreds of individuals, applying
stimuli that partially overlap in their downstream
pathways, and leveraging genomic data sets such
as the 1000 Genomes Project and ENCODE
(29, 42), we (i) pinpointed causal variants in
reQTL regions and (ii) identified the stimulus-
activated TFs that bind differentially at these
SNPs, which explain some of the G × E inter-
actions. Our data set can thus be used to ex-
plore mechanisms of G × E interactions (43) and
are consistent with deoxyribonuclease I sensitiv-
ity QTL (44) and ChIP-seq QTL (45) studies that
showed that differential TF binding between
individuals is pervasive in resting cells.

The reQTLs we identified provide genetic
explanations for interindividual variation in in-
nate immune responses. This is best exemplified
by the trans-reQTL in the IRF7 locus that reg-
ulates the type I IFN antiviral response. Our study
reveals the effects of this trans-reQTL on target
genes (antiviral IFN module) in the context of
a particular cell type (DCs) and in response to
specific ligands (influenza). The changes in this
immune response are, in turn, likely to affect or-
ganismal phenotypes that are driven by the IFN
module, including susceptibility to viral infec-
tions and autoimmune diseases like SLE.

Overall, our high-throughput experimental
pipeline and integrative analysis of primary hu-
man DCs reveals abundant gene-by-environment
interactions, points to the effects of disease
variants on pathogen detection, and motivates

extending our approach to a wide variety of
immune cell types and stimulatory conditions
to better explain the impact of human genetic
variation on the immune response.
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