
until nearly all variable combinations are con-
sidered (figs. S15 to S20). Moreover, alternative
criteria for selecting candidate views may be de-
sirable to address specific objectives. For exam-
ple, a more robust but less specifically predictive
model could be constructed by selecting varia-
ble combinations that are maximally distinct.
With enough data, it should even be possible to
identify optimal weightings of the different views
or have such weightings be state-dependent (e.g.,
to correct for the state-dependent biases of in-
dividual views). Regardless of details, the imple-
mentation of MVE demonstrated here is intended
to be as simple as possible.
The main innovation of MVE is to leverage

the interconnectedness (the shared information)
of complex systems. As seen in Fig. 3, improve-
ments in forecast skill can be especially evident
for short time series (~25 time points). This
result is especially promising given that many
current ecological data sets are wide in scope,
with many different variables being tracked, but
shallow in terms of time series length. Further-
more, the noise-mitigating aspects of MVE are
potentially useful for many other applications
such as reconstructing historical behavior, sig-
nal processing (31), or nonlinear system control
(32). Although the high-dimensionality of com-
plex systems is typically perceived as an obstacle,
such complexity is actually an advantage, leading
to better clarity and prediction.
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SINGLE-CELL GENOMICS

Div-Seq: Single-nucleus RNA-Seq
reveals dynamics of rare adult
newborn neurons
Naomi Habib,1,2,3* Yinqing Li,1,2,3,4* Matthias Heidenreich,1,2,3 Lukasz Swiech,1,2,3

Inbal Avraham-Davidi,1 John J. Trombetta,1 Cynthia Hession,1

Feng Zhang,1,2,3,5,6† Aviv Regev1,7†

Single-cell RNA sequencing (RNA-Seq) provides rich information about cell
types and states. However, it is difficult to capture rare dynamic processes, such
as adult neurogenesis, because isolation of rare neurons from adult tissue is
challenging and markers for each phase are limited. Here, we develop Div-Seq,
which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling
of proliferating cells by 5-ethynyl-2′-deoxyuridine (EdU) to profile individual
dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related
hippocampal cell types and track transcriptional dynamics of newborn neurons
within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq
to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical
neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of
diverse complex tissues.

S
ingle-cell RNA sequencing (scRNA-Seq) has
extended our understanding of heteroge-
neous tissues, including the central nervous
system (CNS) (1–3). However, dynamic pro-
cesses, such as adult neurogenesis, remain

challenging to study by scRNA-Seq. First, scRNA-
Seq requires enzymatic tissue dissociation (Fig.
1A), which may compromise the integrity of neu-
rons and their RNA content, skew data toward
easily dissociated cell types, and is restricted to
fetal or young animals (1). Second, it is difficult to
capture rare cell types, such as adult newborn neu-
rons (4), because of limitations in cell tagging and
isolation at each phase of the dynamic process.
We therefore developed Div-Seq, a method

for RNA-seq of individual, recently divided cells.
Div-Seq relies on sNuc-Seq, a single-nucleus iso-
lation and RNA-Seq method compatible with
frozen or fixed tissue (Fig. 1A), which enables
enrichment of rare labeled cell populations by
fluorescence-activated cell sorting (FACS) (fig.
S1). Div-Seq combines sNuc-Seq with pulse label-
ing of dividing cells by 5-ethynyl-2′-deoxyuridine
(EdU) (5, 6).
We validated that sNuc-Seq on population

of nuclei faithfully represents tissue-level RNA
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(7) (fig. S2, A and B), in agreement with earlier
studies on the feasibility of single-nuclei sequenc-
ing (7, 8). Next, we analyzed 1367 single nuclei
from hippocampal anatomical subregions [dorsal

ganglion (DG), CA1, CA2, and CA3] from adult
mice, including enrichment of genetically tagged
low-abundance g-aminobutyric acid–releasing
(GABAergic) neurons (9) (fig. S1). sNuc-Seq ro-

bustly generated high-quality data across animal
age groups (including 2-year-old mice; figs. S2, C
to H, and S3), detecting 5100 expressed genes per
nucleus on average, with complexity comparable
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to that of single-neuron RNA-Seq from young
mice (1–3) (fig. S3, A to C).
Analysis of sNuc-Seq data revealed distinct

nuclei clusters (Fig. 1, B to D; figs. S4, S5, and

S6, A to C; and table S1) corresponding to known
cell types and anatomical distinctions in the
hippocampus. Analysis was consistent with micro-
dissections, in situ hybridization [Allen Brain

Atlas ISH (10), fig. S5], and bulk RNA-Seq (11)
(fig. S6D). We captured finer distinctions be-
tween closely related cells using a new clustering
algorithm, biSNE (biclustering on stochastic
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neighbor embedding) (fig. S7), which partitioned
the GABAergic neurons into subclusters (fig. S8
and table S2) and associated each subcluster with
combinations of canonical markers (fig. S8C).
We validated selected markers using fluorescent
RNA in situ hybridization (FISH) (fig. S9).
BiSNE also distinguished between spatial hip-

pocampal subregions with divergent transcrip-
tional profiles. BiSNE partitioned glutamatergic
cells into subclusters (Fig. 2A and fig. S10), which
were further mapped to hippocampal subregions,
with ISH of spatial landmark genes (10) (Fig. 2B
and figs. S11 to S13). We validated our mapping
by confirming expression patterns using the Allen
ISH data set (10) (Fig. 2C and fig. S14). Although
some subregions were assigned to a single sub-
cluster (e.g., dorsal lateral CA1, Fig. 2B), most
subregions were assigned partially overlapping
subclusters, suggesting a gradual transition of
transcriptional profiles between neighboring sub-
regions. This extends current anatomical resolu-
tions of the hippocampus (fig. S15) and supports
the notion that cellular diversity does not always
partition into discrete subtypes (12).
We identified genes that are indicative of spe-

cific cell type or position (tables S1 to S3). For
example, Penk, encoding an opioid neuropeptide
(enkephalin), and its receptor Oprd1 (13) were
expressed in mutually exclusive subclusters of cells
(Fig. 2D), which we validated by FISH and the
Allen ISH data set (10) (Fig. 2E and fig. S16).
These cell types and spatial positions may be
involved in enkephalin signaling within the
hippocampus.
Next, to study transcriptional dynamics dur-

ing adult neurogenesis, we developed Div-Seq by
combining sNuc-Seq with EdU labeling of dividing
cells (Fig. 3A). Unlike genetic labeling (2, 14),
EdU tags proliferating cells at any time window,
marking stem cells and their progeny with high
temporal resolution. We applied Div-Seq in the
DG, a canonical neurogenic niche (4), over mul-
tiple time points (1 to 14 days after cell division;
Fig. 3B, fig. S17, and table S4). Div-Seq enriched
for diverse newborn cell types and neurogenic
stages (fig. S17, F and G), from proliferating stem
cells to immature neurons (4).
BiSNE analysis of neuronal lineage nuclei

placed the DG newborn neurons on a contin-
uous trajectory. The order of nuclei along the
trajectory matched the EdU labeling time (Fig.
3C), was independent of animal age (fig. S17H),
and recapitulated known dynamics of neuro-
genesis markers (2, 3, 15) (fig. S18A), indicating
that the trajectory indeed captured the neuro-
nal maturation process.
To characterize the transcriptional program

of adult neurogenesis, we identified and clustered
genes with dynamic expression patterns along
the trajectory (Fig. 3D and table S5). We found
major coordinated transcriptional waves, involv-
ing hundreds of genes, and aligned with known
transitions between neurogenic stages, with ex-
pression shifts from proliferation to neuronal
differentiation [consistent with (2)], and then
to neuronal integration and maturation (Fig.
3D). We identified genes with restricted ex-

pression in specific stages of neurogenesis (figs.
S18 and S19), including transcription factors
and chromatin regulators (fig. S18). We con-
firmed the early neurogenic stage-specific ex-
pression of the axon guidance molecule Draxin
and the ribonucleotide reductase Rrm2 by FISH
(fig. S19).
Accumulating evidence suggests that adult

neurogliogenesis occurs in multiple noncanonical
regions (16), but traditional methods are limited
for the characterization of rare newborn cells
and can lead to less definitive findings, as in the
spinal cord (SC) (17, 18). We applied Div-Seq over
multiple time points (1 to 7 days) in the SC (fig.
S20). SC nuclei 6 to 7 days after labeling (Fig. 4,
A and B) comprised a diverse population of
newborn cells including oligodendrocyte pre-
cursor cells (OPCs, 44%) and immature neurons
(19%), in contrast to 4% OPCs and no immature
neurons in the non–EdU-labeled population. The
SC newborn neurons expressed the GABAergic
markers Gad1 and Gad2, suggesting GABAergic
neurogenesis [consistent with (18)] (Fig. 4B).
Notably, we found a set of immature neuronal
nuclei (10%) at 23 to 24 days after EdU labeling
(fig. S21), suggesting survival of newborn neurons
in the SC.
The full set of neuronal lineage nuclei (fig.

S20A) map to a continuous trajectory (Fig. 4C)
that matched labeling time and expression dy-
namics of known markers (fig. S20C). Compar-
ison of dynamically expressed genes along the
SC and DG trajectories (fig. S20B) identified 347
(28%) common neurogenesis genes (Fig. 4D and
fig. S20C) but also revealed notable distinctions
in the expression dynamics and branching along
the DG and SC trajectories (Fig. 4, D and E) (6),
which can result from differences in time scales,
cell populations, or parallel gliogenesis and neuro-
genesis processes.
The immature neurons from SC and DG are

composed of different neuronal types (GABAergic
in SC, granule cells in DG). To identify candidate
genes driving neuronal lineage specification,
we first identified differentially expressed genes
between SC and DG (t test) and then compared
their expression patterns to those of newborn neu-
rons in the olfactory bulb (OB), where GABAergic
neurons are born (Fig. 4F). A set of SC-specific
genes was also up-regulated in the OB relative to
the DG, including the transcription factors Pbx3
and Meis2. This is consistent with previous re-
ports (19, 20), and with immunohistochemistry
of Pbx3 showing expression in newborn cells
both in the OB and SC but not in the DG (figs.
S22 to S24).
Application of Div-Seq to the adult CNS high-

lighted potential regulators and the neurogenic
potential of the SC, though the functional roles of
these SC newborn neurons remained to be elu-
cidated. Future technology developments may
increase the sensitivity, throughput, and cell
types amenable to these methods. sNuc-Seq and
Div-Seq open new avenues in the study of neu-
ronal diversity and dynamic processes in the CNS
and can be readily applied to diverse biological
systems and human tissues.
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tissues in which individual cells are difficult to isolate.
opposed to cytoplasmic RNA, these methods open the application of single-cell transcriptomics to
during cell differentiation and development. By providing polyadenylated RNA from nuclei alone, as 
clustering algorithm for single-cell and -nucleus RNA sequencing data delineated specific cell types
sequencing of 1402 single nuclei from the adult mouse hippocampus. Combining this approach with a 

 performed RNAet al.sequencing single nuclei and labeling proliferating cells in vivo, Habib 
Gene expression can vary greatly within a single cell. Using techniques that they developed for
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