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SUMMARY

Finding the components of cellular circuits and
determining their functions systematically remains a
major challenge in mammalian cells. Here, we intro-
duced genome-wide pooled CRISPR-Cas9 libraries
into dendritic cells (DCs) to identify genes that control
the induction of tumor necrosis factor (Tnf) by bacte-
rial lipopolysaccharide (LPS), a key process in the
host response to pathogens, mediated by the Tlr4
pathway. We found many of the known regulators of
Tlr4 signaling, as well as dozens of previously un-
known candidates that we validated. By measuring
protein markers and mRNA profiles in DCs that are
deficient in known or candidate genes, we classi-
fied the genes into three functional modules with
distinct effects on the canonical responses to LPS
and highlighted functions for the PAF complex and
oligosaccharyltransferase (OST) complex. Our find-
ings uncover new facets of innate immune circuits
in primary cells and provide a genetic approach for
dissection of mammalian cell circuits.

INTRODUCTION

Regulatory circuits that control gene expression in response to

extracellular signals perform key information processing roles
in mammalian cells, but their systematic unbiased reconstruc-

tion remains a fundamental challenge. There are currently two

major strategies for associating targets with their putative regu-

lators on a genomic scale (reviewed in Kim et al., 2009): (1)

observational (correlative) approaches that relate them based

on statistical dependencies in their quantities or physical associ-

ations and (2) perturbational (causal) approaches that relate

them by the effect that a perturbation in a putative regulator

has on its target.

While observational strategies have become a cornerstone of

circuit inference from genomic data, perturbational strategies

have been more challenging to apply on a genomic scale, espe-

cially in primary mammalian cells. RNAi, which until recently was

the main tool available in mammals, is limited by off-target

effects and lack of sufficient suppression of expression (Eche-

verri et al., 2006), whereas more effective strategies based on

haploid cell lines (Carette et al., 2009) are not applicable to the

diversity of primary cell types and their specialized circuitry. As

a result, a hybrid approach has emerged (Amit et al., 2011),

where genomic profiles (e.g., of mRNAs, protein-DNA binding,

protein levels, protein phosphorylation, etc.) are used to build

observational models from which a smaller set of dozens of

candidate regulators are identified. These candidates are in

turn tested by perturbation.

The recent introduction of genome editing in mammalian cells

using the clustered, regularly interspaced, short palindromic re-

peats (CRISPR)-associated nuclease Cas9 system has enabled

pooled genome-wide screens of gene function (Gilbert et al.,

2014; Konermann et al., 2015; Shalem et al., 2014; Wang et al.,
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Figure 1. A Genome-wide Pooled CRISPR Screen in Mouse Primary DCs

(A) Flow cytometry of intracellular Tnf levels following 8 hr of LPS stimulation for single sgRNAs.

(B) Design of a genome-wide CRISPR screen.

(C) Cumulative distribution function (CDF) plots of the gene level Z-score distribution of genes annotated as ‘‘essential’’ (purple) and ‘‘core essential’’ (black) in

Hart et al. (2014), ‘‘translation’’ (in GO, blue), and all other genes (gray).

(D) (Left) Binned Z scores (ZS) of the Tnflo/Tnfhi ratios (y axis) versus sgRNAmean abundances in Tnflo and Tnfhi (x axis). (Right) Gene score distribution for positive

(ZS) and negative (ZS) regulators (Experimental Procedures).

(E) CDFs of screen ranks for the 35 genes in the TLR pathway from LPS to Tnf (KEGG, blue), non-targeting controls (black), and all other genes (gray).

See also Figure S1.
2014). In such screens, pooled libraries are introduced into cell

lines and cellular phenotypes are selected based on cell lethality

or growth. To expand the biological processes that can be stud-

ied, there remains a need to adapt these methods for short-term

primary cell cultures and selecting cellular phenotypes based on

more versatile molecular markers.

Here, we present a pooled CRISPR strategy to dissect the

innate immune response of bone-marrow-derived dendritic

cells (BMDCs, or DCs) isolated from Cas9-expressing trans-

genic mice. Building on our recent observation that lentiviruses

expressing single-guide RNAs (sgRNAs) could be used to knock

out genes in these cells (Platt et al., 2014), we infected DCswith a

pooled, genome-wide library of lentiviruses, stimulated them

with lipopolysaccharide (LPS), and monitored their responses

by intra-cellular staining for the inflammatory cytokine Tnf, a ma-

jor marker of the early response to LPS. We used flow cytometry

to isolate cells that failed to fully induce Tnf or that induced it

more strongly, and then we determined sgRNA abundance by

deep sequencing. We recovered many of the key known regula-

tors of TLR signaling, validated dozens of new regulators, and

identified three functional modules of regulators with distinct

regulatory effects. Our study identifies new facets in the complex
676 Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc.
response of immune cells to pathogens and provides a general

strategy for systematically dissecting circuits in other primary

mammalian cells.

RESULTS

A System for Cell-Autonomous, Pooled Genetic Screens
in BMDCs Derived from Cas9-Expressing Mice
To enable genome-wide pooled genetic screens, we developed

a cell-autonomous readout of innate immune activation by intra-

cellular staining of a central inflammatory cytokine, Tnf. To test

the assay, we individually transduced BMDCs with lentiviruses

expressing sgRNAs (Experimental Procedures) that target each

of three genes: (1) Tlr4, the cell membrane receptor that senses

bacterial LPS; (2) Myd88, a key component required for Tlr4

signaling to induce Tnf; and (3) Zfp36 (TTP), an RNA-binding

protein that destabilizes Tnf mRNA. Following LPS activation,

we added Brefeldin A to block Tnf secretion and at 8 hr post-acti-

vation detected Tnf with a fluorescent antibody using flow cy-

tometry. Compared to a non-targeting sgRNA control, sgRNAs

targeting Myd88 or Tlr4 strongly reduced Tnf, whereas sgRNAs

targeting Zfp36 increased Tnf (Figure 1A). These results provide



an experimental system in BMDCs for an autonomous genome-

wide pooled screen based on cell sorting.

A Genome-wide Pooled sgRNA Library Screen in
Primary BMDCs
Weperformed three independent, pooled genome-wide screens

using a library of lentiviruses harboring 125,793 sgRNAs target-

ing 21,786 annotated protein-coding and miRNA mouse genes

(Sanjana et al., 2014), as well as 1,000 non-targeting sgRNA

as negative controls. In each of the three replicate screens, we

infected 60–200 million BMDCs with the library at a multiplicity

of infection (MOI) of 1, stimulated cells with LPS, and sorted

Cd11c+ cells based on high or low Tnf expression levels (�5

million cells/bin; Figure 1B and Experimental Procedures). We

then amplified and sequenced sgRNAs from four sources

(Figure 1B, thick gray arrows): post-LPS cells with (1) high Tnf

(‘‘Tnfhi’’) or with (2) low Tnf (‘‘Tnflo’’), (3) cells from the last day

of differentiation prior to LPS stimulation (day 9, ‘‘pre-LPS’’),

and (4) plasmid DNA of the input lentiviral library (‘‘Input’’). We

reasoned that sgRNAs against positive regulators of Tnf expres-

sion would be enriched in Tnflo relative to Tnfhi, that sgRNAs

targeting negative regulators will be enriched in Tnfhi relative to

Tnflo, and that sgRNAs targeting genes essential for DC viability

or differentiation would be depleted in pre-LPS compared to

Input. We established two computational methods to address

the inherent noise of the screen (Figure S1A): the first using

Z scores (ZS) of the fold change in normalized sgRNA abun-

dance (and then averaging the top four sgRNAs per gene) and

the second analogous to differential expression (DE) analysis

of sequenced RNA (Love et al., 2014; Experimental Procedures).

The top-ranked genes substantially overlap between the two ap-

proaches (50/100 for positive regulators, 30/100 for negative

regulators, p < 10�10, hypergeometric test), and their rankings

are well correlated (Figures S1B and S1C) up to ranks 150 and

50 for positive and negative regulators, respectively (Figures

S1D and S1E). While our screen is in principle compatible with

discovery of both positive and negative regulators, it was con-

ducted at high (near-saturation) levels of LPS and is thus likely

to be less sensitive for discovery of negative regulators due to

limited dynamic range for observing further Tnf induction.

The Screen Correctly Identifies Known Regulators of
Cell Viability, Differentiation, Tnf Expression, and Tlr4
Signaling
To assess the initial quality of our screen and scoring scheme,

we first determined that, as expected, sgRNAs against ‘‘essen-

tial’’ genes (Hart et al., 2014) were depleted in pre-LPS samples

compared to Input (Figure 1C, Figure S1F, and Table S1).

Next, a comparison of sgRNAs between Tnfhi and Tnflo was

also consistent with our predictions, with sgRNAs targeting

known positive regulators of the response (e.g., Tlr4 and

Myd88) being enriched in Tnflo compared to Tnfhi and those tar-

geting negative regulators (e.g., Zfp36) being depleted in Tnflo

(ZS analysis, Figure 1D and Table S1; DE analysis, Figure S1G

and Table S1). The top-ranked genes were highly enriched for

those annotated as responsive to LPS (the highest-scoring cate-

gory; GOrilla, false discovery rate [FDR] q val = 10�12; Eden et al.,

2009) or assigned to the Tlr4-to-Tnf pathway (in KEGG; Kanehisa
and Goto, 2000, Figure 1E, and Experimental Procedures); they

were also far more likely to be expressed (Figure S1H, e.g., 78%

of the top 169 genes, compared to 44% of all genes; p = 10�16,

hypergeometric test) at higher levels (p = 10�6 Kolmogorov-

Smirnov [KS] test) and were more likely to be differentially ex-

pressed by RNA-seq following LPS stimulation (Experimental

Procedures and Table S1).

The top 10 ranked positive regulator genes were almost exclu-

sively populated by the hallmark members of TLR signaling, with

many others among the top 100, showing that an unbiased,

genome-wide screen can decipher near-complete pathways

(Figure 2B and Table S1). Tnf had the top rank, demonstrating

the screen’s quantitative nature. Key regulators of the LPS

response with high ranks in our screen included (Figure 2B):

Tlr4 (rank 10) and its co-receptors Ly96 (MD2) (rank 2) and

Cd14 (rank 3); well-known members of LPS/Tlr4 signaling,

including Ticam2 (TRAM, rank 5), Ticam1 (TRIF, rank 8), Myd88

(rank 4), Tirap (rank 9), and Traf6 (rank 13); Rela (rank 11), a

component of NFKB, which regulates Tnf transcription; and

two regulators of NFKB: Ikbkb and Ikbkg (NEMO) (rank 23 and

rank 84, respectively). Other notable known regulators of the

immune response and DC function include the DC pioneer tran-

scription factor Cebpb (rank 21), Akirin2 (rank 39), and Rnf31

(rank 42) and Rbck1 (rank 19), two subunits of the linear ubiquitin

chain assembly complex (LUBAC) that tags NEMO and enables

NFKB activation. Overall, the top 100 ranked genes were highly

enriched for central genes in the LPS-to-Tnf pathway, as anno-

tated by KEGG (13/35 annotated genes are in the top 100; p =

10�22, hypergeometric test) (Figure 1E).

Dozens of Positive Regulators Identified by the Screen
Validated Using Individually Cloned sgRNAs
To validate the top genes in the ranked list, we next tested two

to three sgRNAs against each of the top 176 (112 positive and

64 negative) ranked candidate regulators in individual, rather

than pooled, assays, along with 53 non-targeting controls. We

measured intracellular Tnf levels by flow cytometry (Figure 2A),

excluding sgRNAs with significant reduction in viability (Table

S2 and Experimental Procedures).

Overall, we verified 57 positive regulators out of 112 tested: 45

with at least two independent sgRNAs and another 12 genes

with one sgRNA (Figure 2C and Table S1), including key known

regulators (Figure 2B, right). The rate of true-positive regulators

was in agreement with our predicted FDR (Figure 2E), and the

effect size of TNF phenotype was well correlated with the original

ranking (Figure 2D), supporting the accuracy of our statistical

framework. Notably, 27 out of 57 validated genes are not previ-

ously annotated for immune function or Tnf regulation (e.g.,

Midn; Experimental Procedures and Table S1).

We explored the basis for false negatives among the positive

regulators by examining 15 known regulators of LPS activation

that were not among the top 100 ranked genes in the screen. Us-

ing 28 additional sgRNAs, we found that 8 of the 15 known reg-

ulators indeed reduced Tnf levels (Figures S2A and S2B; notably,

these eight were better ranked in the original screen (187–4,417)

than the remaining seven genes (2,871–18,314), demonstrating

that some factors outside of our threshold still have functional

impact in this complex response.
Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc. 677
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Figure 2. Individual sgRNAs Verify Dozens of Top Hits from the Pooled Screen

(A) Experimental design to validate top screen hits by individual sgRNA knockouts. Tnf levels were measured by flow cytometry for each sgRNA (filled) versus

control sgRNAs (lines). (Right) The numbers of positive and negative candidate regulators tested and verified using 100 ng/ml or, in parentheses, 20 ng/ml LPS.

(legend continued on next page)
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Optimized Characterization of Novel Negative
Regulators by Analysis at Unsaturated Levels of Tnf
Only 4 of 64 (Figure S2C and Table S1) putative negative reg-

ulators were initially validated by two independent sgRNAs,

including: Zfp36 (rank 1 among the ZS negative regulators; Fig-

ure 1A), Stat5b (rank 9), Pdcd10 (CCM3, rank 32), and Ppp2r1a

(rank 16). Each of these, including Zfp36, our known control,

associates with human disease. Stat5b, a transcription factor

activated in response to cytokine induction (Darnell, 1997), is

important for DC differentiation (Sebastián et al., 2008) (consis-

tent with a low-Cd11c phenotype in its targeted cells; Figure S2E)

but was not previously implicated in regulation of Tnf. Pdcd10

(CCM3) was not previously reported to regulate Tnf and is asso-

ciated with familial cerebral cavernous malformation (CCM)

(Faurobert and Albiges-Rizo, 2010), a vascular pathological con-

dition. Pdcd10 (CCM3) was also found to physically interact with

Ppp2r1a, the fourth negative regulator (Goudreault et al., 2009).

Interestingly, Calyculin A, a drug that inhibits the protein phos-

phatase 1 and protein phosphatase 2A complexes, of which

Ppp2r1a is a member, was previously shown to induce Tnf

secretion (Boehringer et al., 1999).

The small proportion of validated negative regulators and their

relatively subtle phenotype suggested that our screen, conducted

with a high (100 ng/ml) LPS concentration that leads to near-satu-

rated Tnf levels, may be less sensitive for further induction of Tnf

when perturbing negative regulators. To increase sensitivity for

negative regulators, we reduced LPS by 5-fold and observed

higher Tnf for 24 of 37 (65%) retested sgRNAs targeting 22 genes,

including the translation initiation factorEif5 not previously associ-

ated with TNF regulation, and the Rela-homolog DNA-binding

proteinDnttip1 (TdIF1) (Yamashita et al., 2001) (Figure S2D).While

this test is different from the initial screen and thus cannot assess

its FDR, it does provide additional functional regulators.

ADeeper Secondary PooledScreenUncovers Additional
Regulators with Greater Sensitivity and Specificity
To reduce false negatives due to limited cell numbers relative to

the size of the sgRNA library or to sgRNA design, we performed

a secondary pooled screen targeting 2,569 of the top genes

(Table S5) from the genome-wide screen with 10 sgRNAs per

gene (using the improved design of Doench et al. [2014]) and

4.9-fold more cells per sgRNA. The secondary screen showed

greater specificity and sensitivity, as reflected in enrichment of

the known regulators (Figures S2F and S2G), highly correlated

ranking of hits from the Z score and DE analyses (Figure S2H

and Table S1), and reduced FDR compared to the genome-

wide screen (e.g., FDR= 6.7% for top 100 genes, Figure S2I), indi-

cating a reduction in noise and enrichment for true positives. The

hits included: Irak4 (ranked 9 in the secondary screen versus 187
(B) (Left) All components of the TLR pathway (KEGG) linking LPS and Tnf and their

each targeted gene (filled) compared to sgRNA controls (lines).

(C) The intracellular Tnf signal (sgRNA Z score relative to non-targeting sgRNA)

Validated hits.

(D) Mean Tnf Z score for all sgRNAs targeting the same gene at each screen ra

confidence interval shown in gray.

(E) Theoretical (gray) and empirical (blue) FDR by screen rank.

See also Figure S2.
in the primary screen), Irak1 (60 versus 992),Sharpin (another sub-

unit of the LUBAC complex, ranked 36), and Nedd8 (ranked 52)

and its E2 conjugation enzyme,Ube2f (ranked 25). In the second-

ary screen, we found 19 positive regulators with no immune anno-

tation that were not found in the primary screen (Z > 1.5; FDR =

0.094; Table S1; e.g., Gpatch8). A deeper secondary screen is

thus an effective strategy for increasing the rate of true positives

when it is not feasible to expand the primary screen.

Positive Tnf Regulators Are Organized in Functional
Modules by Their Impact on RNA and Protein Expression
While all of the validated regulators affect Tnf levels, the path-

ways and mechanisms through which they act may be distinct.

To help determine those, we first measured the impact of the

validated positive regulators on the expression of four additional

protein markers (Experimental Procedures), each reflecting

distinct facets of DC biology: Cd11c (the defining surface marker

of BMDCs), Cd14 (a Tlr4 co-receptor), Mip1a (an induced che-

mokine), and Il6 (an induced inflammatory cytokine). We statisti-

cally tested the effect of each sgRNA on protein expression

compared to a set of six to eight non-targeting controls (Fig-

ure S3A and Experimental Procedures) and then grouped genes

based on the similarity of their effects (Figures 3A, 3B, and Table

S2). Notably, the Tnf distribution varied from unimodal to

bimodal across different targeted genes (Figure 2B); sequencing

several target genes showed that, in some but not all cases, this

could be explained by the proportion of edited cells (Figures

S4A–S4C).

The genes are largely partitioned into three major modules

(Figure 3A). Module I consisted of sgRNAs targeting 17 genes,

including 9 canonical regulators validated in the screen, each

reducing the levels of Cd14 and Il6, but not Cd11c (Figures

3A–3C and Table S2), consistent with the roles of the known reg-

ulators in LPS signaling. Additional module members (Figure 3A)

included: Ctcf, previously implicated in DC differentiation and

activation (Koesters et al., 2007) and Tnf expression (Nikolic

et al., 2014), and themiRNAmmu-mir-106a, amember of themi-

croRNA-17/20a family. Module II included nine regulators whose

sgRNAs reduced all four proteins, among them: four subunits of

the OST protein glycosylation complex (see below), Alg2, a gly-

cosyltransferase involved in oligosaccharide synthesis (Haeuptle

and Hennet, 2009; Huffaker and Robbins, 1983), and genes

whose molecular functions are currently unknown, such as

Tmem258 (Figure 3A). Module III consisted of sgRNAs targeting

three subunits of the PAF complex and Pol2rg; each reduced

Cd11c and Il6 expression but had a veryminor, albeit consistent,

effect on Mip1a (Figures 3B and 3C) and no effect on CD14.

Some genes were not part of the three modules, including

Midn, which is encoded in a locus associated with ulcerative
ranks in the genome-wide screen (blue scale). (Right) Intracellular Tnf levels for

of candidate positive regulators (right) and non-targeting controls (left). (Blue)

nk. Dark gray line indicates LOESS regression (local regression curve), 95%

Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc. 679
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Figure 3. The Validated Positive Regulators Partition into Key Modules by Their Effect on Protein and RNA Expression

(A) Change in expression (blue, reduced; red, increased; Z score) of five protein markers (labeled columns) measured by flow staining with antibodies (Exper-

imental Procedures) for cells with sgRNAs targeting the indicated genes (rows). Three modules indicated with brackets, and color bar on left corresponds to

legend on right.

(B) Violin plots of the distribution of Z scores of true positive regulators of Tnf (left) or of non-targeting control sgRNAs (right) for eachmarker. Functional groups are

colored as in (A).

(C) Effects of selected sgRNAs targeting genes in each of three modules on protein markers for true positives (filled) versus non-targeting controls (lines).

(D–F) Correlation of global RNA expression profiles (normalized to non-targeting control values) for verified positive regulators per time point post-LPS,

as indicated. Color scale: Pearson correlation coefficient.

See also Figure S3.
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colitis (based on GWAS studies; Beck et al., 2014) but has no

known molecular function.

Regulators in each of the modules may affect Tnf levels

through mechanisms that are shared by members of the same

module but are distinct from those of the other modules. To

further assess this, we next measured with RNA-seq the global

effects of each regulator on mRNA levels at 0, 2, 4, and 6 hr

post-LPS (without Brefeldin), compared to 12–14 non-targeting

sgRNAs per time point (Figures 3D–3F, S3B–S3E, and Experi-

mental Procedures). Grouping regulators into modules based

on similarity in their profiles, we found that the modules change

over time, with the distinctions sharpened earlier in the response

and diminishing at later time points as they converge through

likely indirect effects. Pre-LPS (t = 0 hr, Figure 3D), most regula-

tors show little effect compared to non-targeting controls,

except for one group consisting almost entirely of members of

the OST complex, as well as Alg2 and Tmem258. At 2 and 4 hr

(Figures 3E and 3F), the regulators partition to several modules,

including the known TLR regulators, a PAF complexmodule, and

a module associated with RNA regulators including Akirin2,

Polr2g, and Pabpc1. Perturbation of the genes in the latter

module reduces (p < 0.001) the expression of genes involved

in immune effector processes and reduces regulation of immune

system processes (GOrilla qFDR 0.0377 and 0.0246, respec-

tively, at t = 2 hr; Table S3). By 6 hr (Figure S3E), the transcrip-

tional effect of most regulators is more similar. Notably, addition

of Brefeldin in these profiling experiments does not affect Tnf

expression, suggesting that the effect of gene perturbation in

the screen versus the profiling experiment is comparable for in-

flammatory gene expression (Figure S3F).

Taken together, our data suggest three key modules that

impact Tnf levels in distinct ways. We next explored these,

focusing on the modules of the OST and PAF complexes.

Components of theOSTComplex and theER Folding and
Translocation PathwayAre Important for Tnf Expression
in Response to LPS
Among the 57 genes that were confirmed individually were four

structural subunits of the nine-protein oligosaccharyltransferase

complex (OSTc): Dad1, Ddost/OST48, Rpn1, and Rpn2. Consis-

tent with their physical association, they were all members of the

same protein- and RNA-defined modules (Figures 3A and 3D–

3F). The ER-resident OSTc tags asparagine residues of newly

translated proteins with oligosaccharide chains that are critical

for protein folding and transport through the ER. At least six other

genes essential for the ER transport pathway (Alg2, Srpr,

Srp54c, Sec61, Hsp90b, and Sec13; Figure 4A), upstream or

downstream of OSTc, were also among the top-ranking vali-

dated positive regulators (although not necessarily in the OSTc

module).

More than 2,300 proteins are known to be N-glycosylated

(Zielinska et al., 2010), and knocking out subunits of OSTc

may affect Tnf levels directly or indirectly and—in either

case—could reflect a more global effect on N-glycosylated pro-

teins and cell phenotype in LPS-stimulated BMDCs. Since both

Ly96 and Tlr4 are N-glycosylated and Tlr4 transport to the

membrane is disrupted in the absence of tagged asparagines

(da Silva Correia and Ulevitch, 2002), we hypothesized that
OSTc could affect Tnf levels by impacting Tlr4 and/or its

signaling. Indeed, targeting any of the four OSTc structural

subunits or Alg2 (Figures 3C and S4D) strongly reduced each

of the four protein markers (Figure 3A), including CD11c. This

general reduction is consistent with either of two hypotheses:

(1) the cells are not properly differentiated, or (2) the cells

have differentiated properly but their LPS sensing is compro-

mised. In the latter case, OSTc mutants could have either (a)

a global signaling defect (e.g., due to a lack of key membrane

receptors) or (b) a more specific regulatory effect.

To distinguish between these hypotheses, we examined the

specific genes whose expression is affected in OSTc-targeted

cells, compared to cells targeted by known regulators from the

TLR pathway, or in cells with non-targeting sgRNA controls,

either before or after LPS stimulation (Figures 4B–4E and Exper-

imental Procedures). A global differentiation defect should be

apparent in genome-wide expression profiles pre-LPS, and a

global LPS signaling defect would be apparent post-LPS, while

a specific regulatory effect would be manifested as a more

specific transcriptional signature.

Pre-LPS (Figure 4B), there were few transcriptional differ-

ences between cells in which OSTc is targeted or not (Table

S3), except for a group of 60 OST-induced genes that are en-

riched for the ER stress response (FDR q value = 5.83 3 10�16,

GOrilla). Furthermore, 42 (p < 10�10, hypergeometric test) of

these genes are bound by the transcription factor XBP1 at their

proximal promoter in bone-marrow-derived macrophages

(M. Artomov, L. Glimcher, and A.R., unpublished data and Cu-

billos-Ruiz et al., 2015). Thus, OSTc perturbation has a limited

and unique pre-LPS effect on ER stress response genes, and

the reduction in CD11c is not associated with a differentiation

defect. Notably, N-glycosylation and ER stress were previously

shown to interact with the TLR pathway (Komura et al., 2013;

Martinon et al., 2010); however, direct involvement of OSTc

was not shown.

The LPS response in DCs has been previously characterized

(Shalek et al., 2014) by three distinct co-expression signatures:

(1) anti-viral genes (‘‘anti-viral’’), (2) inflammatory genes,

including Tnf, whose expression peaks at 2 hr (‘‘peaked inflam-

matory’’), and (3) inflammatory genes with sustained expression

within the 6 hr timescale (‘‘sustained inflammatory’’). While

several of the mutants in the known TLR pathway genes were

defective in activating all three signatures (Figures 5C–5E), tar-

geting OSTc members reduced the inflammatory signatures

(sustained: p = 0.01; peaked: p = 0.01, t test), but not the

anti-viral signature (p = 0.24, t test) (Figures 4B–4E and 5C–

5E), suggesting a specific rather than global effect on the Tlr4

response.

Additional regulators with the same profile as OSTc may regu-

late Tnf through related pathways. These include Hsp90b and

Alg2, known members of the protein folding and secretion path-

ways (Figure 4A and Figure S4D) and Tmem258, whose human

ortholog resides in a locus associated with Crohn’s disease

(Franke et al., 2010) and targeted by ANRIL, a long non-coding

RNA associated with immune and metabolic diseases (Boche-

nek et al., 2013). Targeting of Tmem258 induced the same

ER stress genes pre-LPS (5/14 genes; 7.73 10�5 q-FDRGOrilla;

Table S3) and similar profiles post-LPS.
Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc. 681
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Figure 4. The OST Complex Strongly Affects the BMDC Inflammatory Response

(A) (Left) Positive regulators in the context of the secretory pathway; (right) intracellular Tnf staining for sgRNAs against each targeted gene (filled) versus

non-targeting controls (lines).

(B–E) Impact of OSTc perturbation on gene expression at indicated times post LPS. (Heatmaps) Row-normalized Z scores (relative to non-targeting controls) of

mRNA levels for each sgRNA-targeted sample (columns). Only mRNAs that are differentially expressed (at least one time point, adjusted p < 0.001) are shown, in

the same order in each panel.

See also Figure S4.
The PAF Complex and Its Physical Interactors Form a
Module that Positively Regulates Tnf Protein Expression
Five of six known subunits of the PAF complex (PAFc; Paf1, Ctr9,

Wdr61, Rtf1, Leo1), a regulator of transcription elongation and

30 mRNA processing (Jaehning, 2010), were identified as positive

regulators of Tnf expression among the top 100 ranked genes in

the primary screen; each was validated individually (Figures 3C,

5A, 5B, and S5A), did not significantly affect cell proliferation

(data not shown), had a similar effect on RNA and protein expres-

sion, and associatedmost strongly with a singlemodule (Figure 3,

blue). The sixth subunit, Cdc73 (rank 842 in the primary screen),

was likely a falsenegativesince twoadditionally designedsgRNAs
682 Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc.
did reduce Tnf expression (Figure S5B). The Ash2l subunit of the

MLL complex, previously reported to physically interact with

Cdc73 (Rozenblatt-Rosen et al., 2005), was also validated as a

positive regulator of Tnf in our screen (rank 41, Figure S5B).

Regulation of transcription elongation was previously shown

to be an important key step in the DC transcriptional response

(Beaudoin and Jaffrin, 1989; Hargreaves et al., 2009). Prior

studies have implicated Paf1 or PAFc in regulation of antiviral

gene expression (Marazzi et al., 2012), but PAFc was not previ-

ously implicated in Tnf or inflammatory gene expression.

To decipher the specific impact of PAFc, we examined its

effect on each of the transcriptional signatures. Targeting PAFc
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Figure 5. The Paf Complex Strongly Affects the LPS Response

(A and B) Intracellular Tnf staining in cells with sgRNAs targeting Paf1 (A) or Rtf1 (B) (filled), compared to sgRNA controls (lines).

(C–F) Violin plots of the distribution of response scores per sgRNA (calculated as an average of all RNA changes relative to non-targeting controls) in cells treated

with sgRNAs targeting known regulators, non-targeting controls (NT), OSTc members, and PAFc members for each of three response signatures: anti-viral

(C, 4 hr post-LPS), sustained inflammatory (D, 4 hr post-LPS), and peaked inflammatory (E, 2 hr post-LPS), as well as Tnf transcript (F, 2 hr post-LPS). Positive and

negative values: increased and reduced response, respectively.

(G and I) Scatter plots of two independent immunopurifications (IP) of Paf1 (G) or Rtf1 (I) followed by LC-MS/MS. (Blue dots) Interactors tested by individual sgRNA

experiments for an effect on Tnf expression. (Bold) IP target.

(H and J) Intracellular Tnf staining in cells with sgRNAs targeting Auh (H) or Irf4 (J) (filled), compared to sgRNA controls (lines).

Also see Figure S5, related to Figure 5.
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subunits significantly reduces the expression of the anti-viral

and sustained inflammatory signatures (p = 0.0002 and 0.001,

respectively, t test) and has a weaker, albeit significant (p =

0.01), effect on the peaked inflammatory signature, including

on Tnf mRNA (Figures 5C–5F).

Tobetter understandPAFc’s function,we analyzedPAFc inter-

actors by immunopurification of Paf1 from BMDCs followed by

mass spectrometry (MS) (Figure 5G and Table S4). We re-identi-

fied all known complex components, except Rtf1, and identified

interactions with several RNA-processing factors (Table S4),

including the AU-rich RNA-binding and leucine metabolism pro-

tein AUH (Kurimoto et al., 2009; Nakagawa et al., 1995), an inter-

action confirmedbywesternblot (FigureS5E).Usingan individual

sgRNA targetingAuh (Figure 5H), we found significant reductions

in Tnf levels, whereas Srsf1 did not affect Tnf levels (Figure S5D).

Since AUHbinds AU-richmotifs in 30 UTRs and the stability of the

Tnf transcript is known to be regulated through an AU-rich motif

by three other RNA-binding proteins (AUF1 [Khabar, 2010], Zfp36

[Carballo et al., 1998], and HuR [Dean et al., 2001; Tiedje et al.,

2012]), it would be interesting to test whether AUH also interacts

with the 30 UTR of Tnf directly to regulate RNA levels.

Although Rtf1 interacts with Paf1 in lower organisms (Mueller

and Jaehning, 2002), we did not observe a direct interaction

between PAFc and Rtf1 when immunopurifying either Paf1

(Figure 5G) or Rtf1 (Figure 5I and Table S4). Of four Rtf1 inter-

actors tested (Git1, Git2, Arhgef6, and Irf4), only one, Irf4, signif-

icantly reduced Tnf expression (Figure 5J), consistent with its

ranking in the secondary screen (rank 13). We also found that

Irf4 affects Cd11c (Figure S5C), consistent with previous findings

(Lehtonen et al., 2005; Tussiwand et al., 2012). The interaction

between Irf4 and Rtf1 may suggest that PAFc, Rtf1, and other

accessory proteins can perform immune-specific transcriptional

activation by recruiting sequence-specific transcription factors.

DISCUSSION

We developed a genome-wide genetic screen in primary cells,

based on our previous demonstration that the genomes of

BMDCs from Cas9-expressing mice could be edited effectively

within a relatively short time window ex vivo (Platt et al., 2014).

By focusing on a quantitative cellular marker rather than cell

viability, we illustrate the versatility of pooled screens and pro-

vide an effective approach for screening in primary cells derived

from the Cas9 transgenic mouse. Our secondary pooled screen

illustrates how increases in the number and efficacy of sgRNAs

per gene and number of cells infected per sgRNA can substan-

tially improve the specificity and sensitivity of a pooled screen.

We thus employed a strategy that uses the results of the primary

screen with a relatively permissive FDR threshold to then

guide both a large number of individual sgRNA validation exper-

iments and a secondary screen with a much lower FDR. Using

these approaches, we systematically identified previously un-

recognized regulators of Tnf in response to LPS, including

two conserved protein complexes and many others (e.g., Tti2,

Ruvbl2, Tmem258, Midn, Ddx39b, Stat5b, and Pdcd10).

To determine whether the genes that affect Tnf act through

different cellular pathways, we quantified how these regulators

alter expression of additional protein markers and genome-
684 Cell 162, 675–686, July 30, 2015 ª2015 Elsevier Inc.
wide mRNAs and partitioned the regulators into three modules

that are dominated by known Tlr4 pathway components, the

OST complex or the PAF complex (Figure 3), thus providing clues

for the functions of genes within each module. While we do not

yet have a molecular model for how OSTc and PAFc impact

the TLR pathway, we found that targeting subunits of the

OSTc results in baseline ER stress that is likely regulated by

XBP1 and may contribute to the reduction in TNF response (Cu-

billos-Ruiz et al., 2015). Our unbiased approach reveals how

conserved cellular processes can have relatively specific effects

on a well-defined response, offering a more comprehensive and

unified view of how cellular functions are linked within a cell.

Our genome-wide, unbiased approach allowed us to uncover

new modules and factors even in a heavily investigated immune

pathway and will be useful across diverse biological systems,

especially when coupled with advances in single-cell profiling

that bridge the gap between genome-wide pooled screens and

deep molecular readouts.

EXPERIMENTAL PROCEDURES

For full methods see, see the Supplemental Experimental Procedures.

Pooled Genome-wide CRISPR Screens

For the pooled genome-wide CRISPR screen, BMDCs were isolated from 6- to

8-week-old constitutive Cas9-expressing female mice and used as described

previously (Platt et al., 2014). Cells were infectedwith the pooled lentiviral library

at an MOI of 1 at day 2. At day 9, BMDCs were stimulated with 100 ng/ml LPS,

and after 30 min, Brefeldin A (GolgiPlug, BD Biosciences) was added. After

8 hr of LPS stimulation, cells were harvested, fixed, and stained for Tnf (Ram-

irez-Ortiz et al., 2015) and Cd11c and then FACS sorted (Supplemental Experi-

mental Procedures). The genome-wide screens were performed as three

independent replicates; in the first screen, 60 million infected cells yielded 350

million cells at day 9, while in the second and third screens, 200 million infected

cells yielded 1 billion BMDCs at day 9. The secondary pooled screen (using a

reduced library)wasdoneusing thesameprotocolwith200million infectedcells.

For individual sgRNA experiments, we used a similar protocol, except BMDCs

were infected with high MOI and selected with puromycin (Invitrogen).

Cloning of Individual and Libraries of sgRNAs and Subsequent Viral

Production

For the primary screen, we used the GeCKOv2mouse library in the lentiGuide-

Puro vector (Sanjana et al., 2014). For the secondary screen, we designed

10 sgRNAs per gene (Doench et al., 2014) to target 2,569 of the top genes

(Table S5) in the DE analysis of the primary screen and added 2,500 non-tar-

geting sgRNAs (Table S5). For library construction, we used a previously pub-

lished protocol (Shalem et al., 2014). For individual sgRNA cloning, pairs of

oligonucleotides (IDT) with BsmBI-compatible overhangs were separately an-

nealed and cloned into the lentiGuide-Puro plasmid (also available at Addg-

ene, plasmid #52963) using standard protocols. Lentivirus was made using

293T cells transfected with lentiGuide-Puro, psPAX2 (Addgene 12260), and

pMD2.G (Addgene 12259) at a 10:10:1 ratio, using Lipofectamine LTX and

plus reagents according to the manufacturer’s instructions.

Amplification and Sequencing of sgRNAs from Cells

After sorting, DNA was purified using QIAGEN DNeasy Blood & Tissue Kit ac-

cording to the manufacturer’s instruction. PCR was performed as previously

described (Shalem et al., 2014), and the PCR products were sequenced on

a HiSeq 2500. The reads were aligned to the sgRNAs using Bowtie 1 (Lang-

mead et al., 2009).

Analysis of Screen

To score sgRNAs and genes based on their abundance in the different bins,

we used two strategies: in the first (DE), we normalized the raw reads and



averagedon all the sgRNAsper gene and then performeddifferential expression

analysis on three biological repeats using the R package DESeq2 (Love et al.,

2014), which fits a negative binomial generalized linear model (GLM). In the sec-

ond strategy (ZS), we combined all low and high bins from the three experiments

intoa singlepair ofTNFlowandTNFhi bins, and fold changesofTNFlow/TNFhiwere

Z score normalized. To collapse to gene level, the mean of the top four ranked

sgRNAs was taken for positive regulators and the bottom four ranked sgRNAs

for negative regulators. For the secondary screen, we used all sgRNAs in both

methods. All of the ranks in the paper are based on ZS unless otherwise noted.

Analysis of Protein and RNA Expression

Day 9 differentiated and transduced BMDCswere activated with LPS for 0, 2, 4,

and 6 hr for the RNA-seq experiments or for 8 hr before stainingwith Il-6,MIp1a,

CD11c, and CD14 antibody. Cells with gene-specific sgRNAs were compared

to those with non-targeting sgRNAs. For RNA purification, we used QIAGEN

RNAeasy 96 Kit and constructed RNA libraries using the SMART-seq2 protocol

(Picelli et al., 2013) in a 96-well plate format followedbyNextera XTDNASample

Preparation (Illumina) and deep sequencing on a HiSeq 2500.

Protein Immunopurification

For each IP, 20 million unstimulated BMDCs were used. Each Paf1 or Rtf1 IP

was always performed in parallel to a control IP and in two independent repli-

cates. In one replicate of the experiment, the digested proteins were labeled

with iTRAQ, and in the second replicate, they were labeled with TMT10plex.

ACCESSION NUMBERS

The RNA-Seq data is deposited in the Gene Expression Omnibus (GEO:

GSE67164). The sgRNA sequencing data is deposited in http://www.

broadinstitute.org/pubs/TNF_CRISPR_DCs/. The processed mass spectrom-

etry data is reported in Table S4, and raw mass spectrometry data is available

upon request.
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