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SUMMARY

The RNA-guided DNA endonuclease Cas9 cleaves
double-stranded DNA targets with a protospacer
adjacent motif (PAM) and complementarity to the
guide RNA. Recently, we harnessed Staphylococcus
aureus Cas9 (SaCas9), which is significantly smaller
than Streptococcus pyogenes Cas9 (SpCas9), to
facilitate efficient in vivo genome editing. Here, we
report the crystal structures of SaCas9 in complex
with a single guide RNA (sgRNA) and its double-
stranded DNA targets, containing the 50-TTGAAT-30

PAM and the 50-TTGGGT-30 PAM, at 2.6 and 2.7 Å
resolutions, respectively. The structures revealed
the mechanism of the relaxed recognition of the
50-NNGRRT-30 PAM by SaCas9. A structural compar-
ison of SaCas9 with SpCas9 highlighted both struc-
tural conservation and divergence, explaining their
distinct PAM specificities and orthologous sgRNA
recognition. Finally, we applied the structural infor-
mation about this minimal Cas9 to rationally design
compact transcriptional activators and inducible nu-
cleases, to further expand theCRISPR-Cas9 genome
editing toolbox.

INTRODUCTION

Advances in our understanding of the CRISPR (clustered regu-

larly interspaced short palindromic repeat)-Cas (CRISPR-asso-

ciated) systems (Mojica et al., 2005; Pourcel et al., 2005; Bolotin

et al., 2005; Makarova et al., 2006; Barrangou et al., 2007;

Brouns et al., 2008; Marraffini and Sontheimer, 2008; Garneau

et al., 2010; Deltcheva et al., 2011; Sapranauskas et al., 2011; Ji-

nek et al., 2012; Gasiunas et al., 2012) have propelled the devel-

opment and applications of Cas9 for genome editing (Cong et al.,

2013;Mali et al., 2013; Cho et al., 2013; Hwang et al., 2013; Jiang

et al., 2013; Jinek et al., 2013). However, much work remains to

understand how Cas9 mediates RNA-guided DNA recognition
and cleavage. Previous studies have shown that Cas9 contains

two endonuclease domains, HNH and RuvC, which cleave the

DNA strands complementary (target DNA strand) and non-com-

plementary (non-target DNA strand) to the guide RNA, respec-

tively (Sapranauskas et al., 2011; Gasiunas et al., 2012; Jinek

et al., 2012), and that Cas9-catalyzed DNA cleavage requires

the presence of a short sequence, known as a protospacer-adja-

cent motif (PAM), located immediately downstream of the target

DNA sequence (Bolotin et al., 2005; Deveau et al., 2008; Mojica

et al., 2009; Garneau et al., 2010; Sapranauskas et al., 2011;

Jinek et al., 2012; Gasiunas et al., 2012). The PAM sequences

are diverse among the orthologous CRISPR-Cas systems, and

the widely used Cas9 from Streptococcus pyogenes (SpCas9)

recognizes a 50-NGG-30 PAM on the non-target DNA strand.

Structural studies of SpCas9 provided insight into the RNA-

guided DNA cleavage mechanism of the Cas9 enzymes. The

crystal structures of SpCas9 in its unbound state (Jinek et al.,

2014), SpCas9 in complex with a single guide RNA (sgRNA)

(Jiang et al., 2015), and SpCas9 in complex with the sgRNA

and its DNA target (Nishimasu et al., 2014; Anders et al., 2014)

revealed that SpCas9 undergoes significant structural rear-

rangement upon association with the sgRNA, and subsequently

adopts a bilobed architecture, consisting of a recognition (REC)

lobe and a nuclease (NUC) lobe, with a central channel envelop-

ing the RNA–DNA heteroduplex (Jinek et al., 2014; Nishimasu

et al., 2014). The PAM is recognized by a PAM-interacting (PI)

domain, which facilitates the target DNA unwinding and the het-

eroduplex formation (Nishimasu et al., 2014; Anders et al., 2014).

In addition to SpCas9, the crystal structure of Actinomyces

naeslundii Cas9 (AnCas9) is also available, but it lacks the

sgRNA and the target DNA (Jinek et al., 2014). Thus, additional

crystal structures of Cas9 orthologs (Chylinski et al., 2013;

Chylinski et al., 2014) bound to nucleic acids are critical to

understand the potential mechanistic and structural conserva-

tions underlying RNA-guided DNA targeting by Cas9, and to

facilitate the development of new Cas9-based genome engi-

neering technologies.

Recently, we harnessed a small Cas9 from Staphylococcus

aureus (SaCas9) for eukaryotic genome editing (Ran et al.,

2015). Although several Cas9 orthologs can cleave DNA targets
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in vitro, only SaCas9 and SpCas9 exhibit robust activity when

transplanted into mammalian cells. SaCas9 shares only 17%

sequence identity with SpCas9, highlighting the structural and

functional variations among orthologous CRISPR-Cas9 sys-

tems. SaCas9 (1,053 amino acid residues) is significantly smaller

than SpCas9 (1,368 amino acid residues), and thus is easier to

deliver to somatic tissues for genome editing (Ran et al., 2015).

While our previous attempts to create a smaller version of

SpCas9 by rationally removing various domains met with limited

success (Nishimasu et al., 2014), the structure of the naturally

smaller SaCas9 may reveal the minimum and essential compo-

nents of Cas9 enzymes. In addition, SaCas9 recognizes a

50-NNGRRT-30 PAM (where R represents a purine [i.e., A or G]),

which is distinct from the 50-NGG-30 PAM for SpCas9, thereby

offering an opportunity to understand the diverse PAM specific-

ities of the Cas9 orthologs.

Here, we report the crystal structures of SaCas9 in complex

with the sgRNA and its target DNA, containing either the

50-TTGAAT-30 PAM (2.6 Å resolution) or the 50-TTGGGT-30

PAM (2.7 Å resolution), to facilitate a comparative analysis of

the distinct Cas9 orthologs and to provide the structural founda-

tion for the rational design of SaCas9-based genome engineer-

ing tools. Our structural and functional data provide insight into

the PAM-dependent, RNA-guided DNA cleavage mechanism

of SaCas9, as well as the minimal requirements for general

Cas9 activity. Furthermore, our data enable the structural com-

parison between SaCas9 and SpCas9, revealing notable differ-

ences in the interactions in their REC lobe–sgRNA scaffolds

and PI domain–PAM sequences. These comparative results

also highlighted the flexible nature of the RuvC and HNH

nuclease domains, and identified a previously uncharacterized

and evolutionarily divergent wedge (WED) domain. Given its

compact size, SaCas9 holds great potential as a minimum scaf-

fold for genome engineering. The structural and comparative

data presented here advance our understanding of the RNA-

guided DNA cleavage mechanism and provide a starting point

for the future design of Cas9 variants with expanded target

space and improved specificity.

RESULTS

Overall Structure of the SaCas9–sgRNA–Target DNA
Complex
We solved the crystal structures of full-length SaCas9 (residues

1–1053; N580A/C946A) in complex with a 73-nucleotide (nt)

sgRNA, a 28-nt target DNA strand and an 8-nt non-target

DNA strand, containing either the 50-TTGAAT-30 PAM or 50-
TTGGGT-30 PAM, at 2.6 and 2.7 Å resolutions, respectively (Fig-

ures 1A–1D, Figure S1A, and Table S1). Since solvent-exposed

cysteine residues may hamper crystallization, we replaced a

non-conserved cysteine residue (Cys946) with alanine after con-

firming that the C946A mutation did not affect the DNA cleavage

activity in vivo (Figures S1B–S1D). Based on homology to

SpCas9, we mutated one of the putative catalytic residues,

Asn580 in the HNH domain, to alanine to prevent the potential

cleavage of the target DNA during crystallization. Since the two

structures are virtually identical (root-mean-square deviation

[rmsd] of 0.2 Å for 1,043 equivalent Ca atoms), we will describe
1114 Cell 162, 1113–1126, August 27, 2015 ª2015 Elsevier Inc.
the quaternary complex structure containing the 50-TTGAAT-30

PAM unless otherwise stated.

SaCas9 adopts a bilobed architecture consisting of a REC

lobe (residues 41–425) and a NUC lobe (residues 1–40 and

435–1053) (Figures 1C and 1D). The two lobes are connected

by an arginine-rich bridge helix (residues 41–73) and a linker

loop (residues 426–434). The NUC lobe consists of the RuvC

(residues 1–40, 435–480 and 650–774), HNH (residues 520–

628), WED (residues 788–909), and PI (residues 910–1053) do-

mains (Figures 1C and 1D). The PI domain can be divided into

a Topoisomerase-homology (TOPO) domain and a C-terminal

domain, as in SpCas9 (Jinek et al., 2014). The RuvC domain con-

sists of three separate motifs (RuvC-I–III) and interacts with the

HNH and PI domains. The HNH domain is connected to RuvC-

II and RuvC-III by the L1 (residues 481–519) and L2 (residues

629–649) linker regions, respectively. The WED and RuvC do-

mains are connected by a ‘‘phosphate lock’’ loop (residues

775–787), as in SpCas9 (Anders et al., 2014). The active site of

the HNH domain is distant from the cleavage site in the target

DNA strand (the phosphodiester linkage between dC3 and

dA4), indicating that the present structure represents the inactive

state, as in the cases of the SpCas9–sgRNA–target DNA com-

plex structures (Nishimasu et al., 2014; Anders et al., 2014).

Previous structural studies revealed that SpCas9 undergoes

conformational rearrangements upon guide RNA binding, to

form the central channel between the REC and NUC lobes (Jinek

et al., 2014; Nishimasu et al., 2014; Anders et al., 2014; Jiang

et al., 2015). In the absence of the guide RNA, SpCas9 and

AnCas9 adopt a closed conformation, where the active site of

the HNH domain is covered by the RuvC domain (Figure S2). In

contrast, the ternary and quaternary complex structures of

SpCas9 adopt an open conformation and have the central chan-

nel, which accommodates the guide RNA–target DNA heterodu-

plex (referred to as the guide:target heteroduplex) (Figures 1E

and 1F). The present quaternary complex structure of SaCas9

adopts a similar open conformation to form the central channel,

which accommodates the guide:target heteroduplex (Figures 1C

and 1D), suggesting that the guide RNA-induced conformational

activation is conserved between SaCas9 and SpCas9. A struc-

tural comparison between SaCas9 and SpCas9 revealed that,

although their overall architectures are similar, there are notable

differences in their REC, WED, and PI domains, as described in

detail below, thereby explaining the significant sequence and

size differences of the two Cas9 orthologs (Figures 1C–1F and

Figure S3).

Structure of the sgRNA–Target DNA Complex
The SaCas9 sgRNA consists of the guide region (G1–C20),

repeat region (G21–G34), tetraloop (G35–A38), anti-repeat re-

gion (C39–C54), stem loop 1 (A56–G68), and single-stranded

linker (U69–U73), with A55 connecting the anti-repeat region

and stem loop 1 (Figures 2A–2D). U73 at the 30 end is disordered

in the present structure. The guide region (G1–C20) and the

target DNA strand (dG1–dC20) form the guide:target heterodu-

plex, whereas the target DNA strand (dC(�8)–dA(�1)) and the

non-target DNA strand (dT1*–dG8*) form a PAM-containing

duplex (referred to as the PAM duplex) (Figures 2A and 2B).

The repeat (G21–G34) and anti-repeat (C39–C54) regions form
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Figure 1. Structure of the SaCas9–sgRNA–Target DNA Complex

(A) Domain organization of SaCas9. BH, bridge helix; CTD, C-terminal domain.

(B) Schematic of the sgRNA–target DNA complex. The putative stem loop 2 was truncated for crystallization.

(C and D) Ribbon (C) and surface (D) representations of the SaCas9–sgRNA–target DNA complex. The active sites of the RuvC (Asp10) and HNH (Asn580)

domains are indicated by red circles. Molecular graphics images were prepared using CueMol (http://www.cuemol.org).

(E and F) Ribbon (E) and surface (F) representations of the SpCas9–sgRNA–target DNA complex (PDB: 4UN3). The SpCas9-specific insertions in the REC and PI

domains are highlighted in pale blue. In (F), the L1 and L2 linker regions and the HNH domain are omitted for clarity.

See also Figures S1, S2, and S3.
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Figure 2. Structure of the sgRNA–Target DNA Complex

(A) Nucleotide sequences of the sgRNA and the target DNA. The putative stem loop 2 (dashed box) was truncated for crystallization. U73 is disordered in the

structure.

(B) Overview of the sgRNA–target DNA complex.

(C and D) Close-up views of the repeat:anti-repeat duplex (C) and stem loop 1 (D). Key interactions are shown as dashed lines.

(legend continued on next page)
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a distorted duplex (referred to as the repeat:anti-repeat duplex)

via 13 Watson-Crick base pairs (Figures 2A and 2B). The un-

paired nucleotides (C30, A43, U44, and C45) form an internal

loop (Figure 2C). This distorted structure of the repeat:anti-

repeat duplex is precisely recognized by the REC and WED

domains, as the insertion of GAU into the repeat region, which

eliminated the internal loop, drastically reduced the Cas9-medi-

ated DNA cleavage (Figure 2E).

Stem loop 1 is formed via three Watson-Crick base pairs

(G57:C67–C59:G65) and two non-canonical base pairs (A56:

G68 and A60:A63) (Figures 2A and 2D). U64 does not base

pair with A60 and is flipped out of the stem loop (Figure 2D).

The N1 and N6 of A63 hydrogen bond with the 20-OH and N3

of A60, respectively. G68 stacks with G57:C67, with the G68

N2 interacting with the backbone phosphate group between

A55 and A56. A55 adopts the syn conformation, and its adenine

base stacks with U69 (Figure 2D). In addition, the N1 of A55

hydrogen bonds with the 20-OH of G68, thus stabilizing the

basal region of stem loop 1. An adenosine residue immediately

after the repeat:anti-repeat duplex is highly conserved among

CRISPR-Cas9 systems, and the equivalent adenosine in the

SpCas9 sgRNA, A51, also adopts the syn conformation (Nishi-

masu et al., 2014; Anders et al., 2014) (Figure S4A), suggesting

that these adenosine residues play conserved key roles in con-

necting the repeat:anti-repeat duplex and stem loop 1.

The SpCas9 sgRNA contains three stem loops (stem loops

1–3), which interact with Cas9 and contribute to complex forma-

tion (Nishimasu et al., 2014) (Figure 2F and Figure S4A). The

sgRNA lacking stem loops 2 and 3 supports SpCas9-catalyzed

DNA cleavage in vitro but not in vivo, indicating the importance

of stem loops 2 and 3 for the cleavage activity in vivo (Cong

et al., 2013; Hsu et al., 2013; Nishimasu et al., 2014; Wright

et al., 2015). In contrast, the SaCas9 sgRNA is predicted to

contain only two stem loops (stem loops 1 and 2), based on its

nucleotide sequence (Figure S4B). As in SpCas9, the sgRNA

lacking stem loop 2 supported SaCas9-catalyzed DNA cleavage

in vitro but not in vivo (Figure 2E and Figure S4C), suggesting that

the secondary structures on the 30 tracrRNA tail of the sgRNA are

critical for successfully harnessing Cas9 for genome editing

applications. Although we failed to obtain diffraction-quality

crystals of SaCas9 bound to a version of sgRNA containing the

full-length tracrRNA, the truncation of stem loop 2 dramatically

improved the quality of the crystals. Thus, it remains unknown

how stem loop 2 interacts with SaCas9, although it may bind

to the positively charged groove between the RuvC and PI do-

mains, as in SpCas9 (Nishimasu et al., 2014; Anders et al.,

2014) (Figure 1D and Figure S4D).

Recognition Mechanism of the Guide:Target
Heteroduplex
The guide:target heteroduplex is accommodated in the central

channel formed between the REC and NUC lobes (Figures 1D

and 3). The sugar-phosphate backbone of the PAM-distal region
(E) Mutational analysis of SaCas9 sgRNA scaffolds. Effects of mutations on the a

from the sgRNA (+77) scaffold are shown at the respective positions, with dashe

(F) Superimposition of the sgRNAs of SaCas9 and SpCas9 (PDB: 4OO8) (stereov

See also Figure S4.
(A3–U6) of the sgRNA interacts with the REC lobe (Thr238,

Tyr239, Lys248, Tyr256, Arg314, Asn394, and Gln414) (Figure 3).

In SpCas9 and SaCas9, the RNA–DNA base pairing in the 8 bp

PAM-proximal ‘‘seed’’ region in the guide:target heteroduplex

is critical for Cas9-catalyzed DNA cleavage (Jinek et al., 2012;

Hsu et al., 2013; Ran et al., 2015). Consistent with this, the phos-

phate backbone of the sgRNA seed region (C13–C20) is exten-

sively recognized by the bridge helix (Asn44, Arg48, Arg51,

Arg55, Arg59, and Arg60) and the REC lobe (Arg116, Gly117,

Arg165, Gly166, Asn169, and Arg209) (Figures 3 and 4A), as in

the case of SpCas9 (Nishimasu et al., 2014). In addition, the

20-OH groups of C15, U16, U17, and G19 interact with the REC

lobe (Gly166, Arg208, Arg209, and Tyr211). These structural

findings suggest that the sgRNA binds to SaCas9 with its seed

region pre-ordered in an A-form conformation for base-pairing

with the target DNA strand, as observed in the SpCas9–sgRNA

binary complex (Jiang et al., 2015). In addition, the sugar-phos-

phate backbone of the target DNA strand interacts with the REC

lobe (Tyr211, Trp229, Tyr230, Gly235, Arg245, Gly391, Thr392,

and Asn419) and the RuvC domain (Leu446, Tyr651 and

Arg654) (Figure 3). These structural observations explain the

RNA-guided DNA targeting mechanism of SaCas9.

The C-terminal region of the REC lobe interacts with the PAM-

distal region of the heteroduplex, whereas the N-terminal region

of the REC lobe interacts with the repeat:anti-repeat duplex and

the PAM-proximal region of the heteroduplex (Figure 3). Notably,

the C-terminal region of the REC lobe of SaCas9 shares struc-

tural similarity with those of SpCas9 (PDB: 4UN3, 26% identity,

rmsd of 1.9 Å for 177 equivalent Ca atoms) and AnCas9 (PDB:

4OGE, 16% identity, rmsd of 3.2 Å for 167 equivalent Ca atoms)

(Figure S5). These structural findings suggested that the Cas9

orthologs recognize the PAM-distal region of the guide:target

heteroduplex in a similar manner.

Recognition Mechanism of the sgRNA Scaffold
The repeat:anti-repeat duplex is recognizedby theRECandWED

domains, primarily through interactions between the protein and

the sugar-phosphate backbone (Figures 3 and 4B). Consistent

with our data showing that the distorted repeat:anti-repeat

duplex is critical for Cas9-catalyzed DNA cleavage (Figure 2E),

the internal loop is recognized by the WED domain (Figure 4B).

The 20-OH of C30 hydrogen bonds with Tyr868, and the back-

bone phosphate groups of U31, C45, and U46 interact with

Lys870, Arg792, and Lys881, respectively (Figure 4B). These

structural observations explain the structure-dependent recogni-

tion of the repeat:anti-repeat duplex by SaCas9.

Stem loop 1 is recognized by the bridge helix and the REC lobe

(Figures 3 and 4C). The phosphate backbone of stem loop 1 in-

teracts with the bridge helix (Arg47, Arg54, Arg55, Arg58, and

Arg59) and the REC lobe (Arg209, Gly216, and Ser219) (Fig-

ure 4C). The 20-OH of A63 hydrogen bonds with His62. The

flipped-out U64 is recognized by Arg209 and Glu213 via

stacking and hydrogen-bonding interactions, respectively. A55
bility to induce indels in the target EMX1 locus were examined. Base changes

s indicating unaltered bases (n = 3, error bars show mean ± SEM).

iew).
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Figure 3. Schematic of Nucleic Acid Recog-

nition by SaCas9

SaCas9 residues that interact with the sgRNA and

the target DNA via their main chain are shown in

parentheses. Water-mediated hydrogen-bonding

interactions are omitted for clarity.
is extensively recognized by the phosphate lock loop (Figure 4D).

The N6, N7, and 20-OH of A55 hydrogen bond with Asn780/

Arg781, Leu783, and Lys906, respectively. Lys57 interacts with

the backbone phosphate group between C54 and A55, and

the side chain of Leu783 forms hydrophobic contacts with the

nucleobases of A55 and A56. The phosphate backbone of the

linker region electrostatically interacts with the RuvC domain

(Arg452, Lys459, and Arg774) and the phosphate lock loop

(Arg781), and the nucleobase of G70 stacks with the side chain

of Arg47 on the bridge helix (Figure 4D).

Structural Basis for the Orthogonal Recognition of
sgRNA Scaffolds
A comparison of the quaternary complex structures of SaCas9

and SpCas9 revealed that the structurally diverse REC and
1118 Cell 162, 1113–1126, August 27, 2015 ª2015 Elsevier Inc.
WED domains recognize distinct struc-

tural features of the repeat:anti-repeat

duplex, allowing the cognate sgRNAs to

be distinguished in a highly specific

manner (Figures 4E and 4F and Fig-

ure S6). The SaCas9 WED domain has a

new fold comprising a twisted five-

stranded b sheet flanked by four a

helices, and is responsible for the recog-

nition of the distorted repeat:anti-repeat

duplex, as described above (Figures 4B

and 4E and Figures S6A and S6B). In

contrast, the SpCas9 WED domain

adopts a compact loop conformation

and interacts with the repeat:anti-repeat

duplex, which is structurally different

from that of the SaCas9 sgRNA (Nishi-

masu et al., 2014; Anders et al., 2014)

(Figure 4F and Figures S6A and S6C).

The AnCas9 WED domain has yet

another different fold containing three

antiparallel b-hairpins (Jinek et al., 2014)

(Figure S6A). These structural differences

in the WED domains are consistent with

the variations in the sgRNA scaffolds

among the CRISPR-Cas9 systems (Fon-

fara et al., 2014; Briner et al., 2014; Ran

et al., 2015).

The REC lobes also contribute to the

orthogonal recognition of the sgRNA

scaffolds. While the REC lobes of

SaCas9 and SpCas9 share structural

similarity, the SpCas9 REC lobe has

four characteristic insertions (Ins 1–4),

which are absent in the SaCas9 REC
lobe (Figures 4E and 4F and Figures S6B and S6C). Ins 2 (also

known as the REC2 domain) does not contact the nucleic acids

in the SpCas9 structures and is dispensable for the DNA cleav-

age activity (Nishimasu et al., 2014), consistent with the absence

of Ins 2 in SaCas9 (Figures 4E and 4F). Ins 1 and 3 recognize the

SpCas9-specific internal loop in the repeat:anti-repeat duplex

(Figure 4F and Figure S6C). In particular, Ins 3 interacts with

the flipped-out G43 and U44 in the repeat:anti-repeat duplex in

base-specific manners (Figure S6C). In addition, Ins 4 interacts

with stem loop 1 of the SpCas9 sgRNA, which is shorter than

that of the SaCas9 sgRNA (Figures 4E and 4F and Figures S6B

and S6C). Together, these structural observations demonstrate

how the Cas9 orthologs recognize their cognate sgRNAs in

orthogonal manners, using specific combinations of the structur-

ally diverse REC and WED domains.



Recognition Mechanism of the 50-NNGRRT-30 PAM
SaCas9 recognizes the 50-NNGRRN-30 PAM, with a preference

for a thymine base at the 6th position (Ran et al., 2015), which

is distinct from the 50-NGG-30 PAM of SpCas9. In the present

structures containing either the 50-TTGAAT-30 PAM or the

50-TTGGGT-30 PAM, the PAM duplex is sandwiched between

the WED and PI domains, and the PAM in the non-target DNA

strand is read from the major groove side by the PI domain (Fig-

ures 5A and 5B). dT1* and dT2* do not directly contact the

protein (Figures 5A and 5B). Consistent with the observed

requirement for the 3rd G in the 50-NNGRRT-30 PAM, the O6

and N7 of dG3* form bidentate hydrogen bonds with the side

chain of Arg1015, which is anchored via salt bridges with

Glu993 in both complexes (Figures 5A and 5B). In the

50-TTGAAT-30 PAM complex, the N7 atoms of dA4* and dA5*

form direct and water-mediated hydrogen bonds with Asn985

and Asn985/Asn986/Arg991, respectively (Figure 5A). In addi-

tion, the N6 of dA5* forms a water-mediated hydrogen bond

with Asn985. Similarly, in the 50-TTGGGT-30 PAM complex, the

N7 atoms of dG4* and dG5* form direct and water-mediated

hydrogen bonds with Asn985 and Asn985/Asn986/Arg991,

respectively (Figure 5B). The O6 of dG5* forms a water-mediated

hydrogen bond with Asn985. These structural features explain

the ability of SaCas9 to recognize the purine nucleotides at po-

sitions 4 and 5 in the 50-NNGRRT-30 PAM. The O4 of dT6*

hydrogen bonds with Arg991 (Figures 5A and 5B), explaining

the preference of SaCas9 for the 6th T in the 50-NNGRRT-30

PAM. Single alanine mutations of these PAM-interacting resi-

dues reduced the cleavage activity in vivo, and doublemutations

abolished the activity (Figure 5C), confirming the importance of

Asn985, Asn986, Arg991, Glu993, and Arg1015 for PAM recog-

nition. In addition, the phosphate backbone of the PAM duplex

is recognized from the minor groove side by the WED domain

(Tyr789, Tyr882, Lys886, Ans888, Ala889, and Leu909), in a

distinct manner from that in SpCas9 (Figure 3). Together, our

structural and functional data have revealed the mechanism un-

derlying the relaxed recognition of the 50-NNGRRT-30 PAM by

SaCas9.

Structural Basis for the Distinct PAM Specificities
A structural comparison of SaCas9, SpCas9, and AnCas9 re-

vealed that, despite the lack of sequence homology, their PI

domains share a similar protein fold (Figures 5D and 5E, and

Figure S6A). The PI domains consist of the TOPO domain,

comprising a three-stranded anti-parallel b sheet (b1–b3) flanked

by several a helices, and the C-terminal domain, comprising a

twisted six-stranded anti-parallel b sheet (b4–b9) (b7 in SpCas9

adopts a loop conformation) (Figures 5D and 5E and Figure S6A).

In both SaCas9 and SpCas9, the major groove of the PAM

duplex is read by the b5–b7 region in their PI domains (Figures

5D and 5E). The 3rd G in the 50-NNGRRT PAM-30 is recognized

by Arg1015 in SaCas9 (Figure 5D), whereas the 3rd G in the

50-NGG-30 PAM is recognized by Arg1335 in SpCas9 in a similar

manner (Figure 5E). However, there are notable differences in the

PI domains of SaCas9 and SpCas9, consistent with their distinct

PAM specificities. Arg1333 of SpCas9, which recognizes the 2nd

G in the 50-NGG-30 PAM, is replaced with Pro1013 in SaCas9

(Figures 5D and 5E and Figure S3). In addition, SpCas9 lacks
the amino acid residues equivalent to Asn985/Asn986 (b5) and

Arg991 (b6) of SaCas9, because the b5–b6 region of SpCas9 is

shorter than that of SaCas9 (Figures 5D and 5E and Figure S3).

Moreover, Asn985, Asn986, Arg991, and Arg1015 in SaCas9

are replaced with Asp1030, Thr1031, Lys1034, and Lys1061 in

AnCas9, respectively (Figure S6A), suggesting that the PAM of

AnCas9 is different from those of SaCas9 and SpCas9 (although

the sequence remains unknown). Together, these structural find-

ings demonstrate that the distinct PAM specificities of the Cas9

orthologs are primarily defined by the specific differences in the

PAM-interacting residues in the PI domains.

Mechanism of Target DNA Unwinding
In SpCas9, Glu1108 and Ser1109, in the phosphate lock loop,

hydrogen bond with the phosphate group between dA(�1) and

dT1 in the target DNA strand (referred to as the +1 phosphate),

thereby contributing to the target DNA unwinding (Anders

et al., 2014) (Figure 5F). The present structure revealed that

SaCas9 also has the phosphate lock loop, although it shares

limited sequence similarity to that of SpCas9 (Figure 5G and Fig-

ure S3). In SaCas9, the +1 phosphate between dA(�1) and dG1,

in the target DNA strand, hydrogen bonds with the main-chain

amide groups of Asp786 and Thr787 and the side chain of

Thr787 in the phosphate lock loop (Figure 5G). These interac-

tions result in the rotation of the +1 phosphate, thereby facili-

tating base-pairing between dG1 in the target DNA strand and

C20 in the sgRNA. Indeed, the SaCas9 T787A mutant showed

reduced DNA cleavage activity (Figure 5C), confirming the func-

tional significance of Thr787 in the phosphate lock loop. These

observations indicated the conserved molecular mechanism of

target DNA unwinding in SaCas9 and SpCas9.

RuvC and HNH Nuclease Domains
The RuvC domain of SaCas9 has an RNase H fold, and shares

structural similarity with those of SpCas9 (PDB: 4UN3, 26%

identity, rmsd of 2.0 Å for 179 equivalent Ca atoms) and AnCas9

(PDB: 4OGE, 17% identity, rmsd of 3.0 Å for 169 equivalent Ca

atoms) (Figure 6A). Asp10, Glu477, His701, and Asp704 of

SaCas9 are located at positions similar to those of the catalytic

residues of SpCas9 (Asp10, Glu762, His983, and Asp986) and

AnCas9 (Asp17, Glu505, His736, and Asp739) (Figure 6A and

Figure S3). Indeed, the D10A, E477A, H701A, and D704A mu-

tants of SaCas9 exhibited almost no DNA cleavage activity (Fig-

ures S7A and S7B), suggesting that the SaCas9 RuvC domain

cleaves the non-target DNA strand through a two-metal ion

mechanism, as in other RNase H superfamily endonucleases

(Górecka et al., 2013).

The HNH domain of SaCas9 has a bba-metal fold, and shares

structural similarity with those of SpCas9 (27% identity, rmsd of

1.8 Å for 93 equivalent Ca atoms) and AnCas9 (18% identity,

rmsd of 2.6 Å for 98 equivalent Ca atoms) (Figure 6B). Asp556,

His557, and Asn580 of SaCas9 are located at positions similar

to those of the catalytic residues of SpCas9 (Asp839, His840,

and Asn863) and AnCas9 (Asp581, His582, and Asn606) (Fig-

ure 6B and Figure S3). Indeed, the H557A and N580A mutants

of SaCas9 almost completely lacked DNA cleavage activity

(Figures S7A and S7B), suggesting that the SaCas9 HNH

domain cleaves the target DNA strand through a one-metal ion
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mechanism, as in other bba-metal endonucleases (Biertümpfel

et al., 2007).

A structural comparison of SaCas9 with SpCas9 and AnCas9

revealed that the RuvC and HNH domains are connected by

a-helical linkers, L1 and L2, and that notable differences exist

in the relative arrangements between the two nuclease domains

(Figure 6C). A biochemical study suggested that PAM duplex

binding to SpCas9 facilitates the cleavage of the target DNA

strand by the HNH domain (Sternberg et al., 2014). However,

in the PAM-containing quaternary complex structures of SaCas9

andSpCas9, the HNHdomains are distant from the cleavage site

of the target DNA strand (Figure 6C). A structural comparison of

SaCas9 with Thermus thermophilus RuvC in complex with a

Holliday junction substrate (Górecka et al., 2013) indicated steric

clashes between the L1 linker and the modeled non-target DNA

strand, bound to the active site of the SaCas9 RuvC domain

(Figures S7C and S7D). These observations suggested that the

binding of the non-target DNA strand to the RuvC domain may

facilitate a conformational change of L1, thereby bringing the

HNH domain to the scissile phosphate group in the target DNA

strand.

Structure-Guided Engineering of SaCas9 Transcription
Activators and Inducible Nucleases
Using the crystal structure of SaCas9, we sought to conduct

structure-guided engineering to further expand the CRISPR-

Cas9 toolbox, as we have done previously using the SpCas9

crystal structure. Given the similarities in the overall domain

organizations of SaCas9 and SpCas9, we initially explored the

feasibility of engineering the SaCas9 sgRNA, to develop robust

transcription activators. In the SpCas9 structure, the tetraloop

and stem loop 2 of the sgRNA are exposed to the solvent (Nishi-

masu et al., 2014; Anders et al., 2014) (Figure S4D), and

permitted the insertion of RNA aptamers into the sgRNA to

create robust RNA-guided transcription activators (Konermann

et al., 2015). To generate the SaCas9-based activator system,

we created a catalytically inactive version of SaCas9 (dSaCas9)

by introducing the D10A and N580A mutations to inactivate the

RuvC and HNH domains, respectively, and attached VP64 to

theC terminus of dSaCas9 (Figures 7A and 7B). The sgRNA scaf-

fold was modified by the insertion of the MS2 aptamer stem loop

(MS2-SL), to allow the recruitment of MS2-p65-HSF1 transcrip-

tional activation modules (Figure 7A). To evaluate the dSaCas9-

based activator design, we constructed a transcriptional

activation reporter system, consisting of tandem sgRNA target

sites upstream of a minimal CMV promoter driving the expres-

sion of the fluorescent reporter gene mKate2 (Zhang et al.,

2011) (Figure 7B). We included an additional transcriptional

termination signal upstream of the reporter cassette, to reduce

the background previously observed in a similar reporter (Cong

et al., 2012) (Figure 7B). We observed robust activation of
Figure 4. sgRNA Recognition Mechanism

(A–D) Recognition of the seed region (A), the repeat:anti-repeat duplex (B), stem

bridges are shown as dashed lines. In (A), the target DNA strand is omitted for c

(E and F) Recognition of the sgRNA and target DNA by the REC andWEDdomains

highlighted in pale blue.

See also Figures S5 and S6.
mKate2 transcription whenwe expressed the engineered sgRNA

complementary to the target sites, whereas the non-binding

sgRNA had no detectable effect (Figure 7C). Based on a

screening of different sgRNA designs with this reporter assay,

we found that the insertions of MS2-SL into the tetraloop and

putative stem loop 2 induced strong activation in our reporter

system, whereas the insertion of MS2-SL into stem loop 1

yielded modest activation, consistent with the structural data

(Figure 7D). The single insertion of MS2-SL into the tetraloop

was the simplest design that yielded strong transcriptional acti-

vation. Using this optimal sgRNA design, we further tested the

activation of endogenous targets in the human genome. We

selected two guides each for the human ASCL1 and MYOD1

genomic loci, and demonstrated that the dSaCas9-based acti-

vator system activated both genes to levels comparable to

those of the dSpCas9-based activator (Konermann et al.,

2013) (Figure 7E). Given that the sgRNAs for SaCas9 and

SpCas9 are not interchangeable, the SaCas9-based transcrip-

tion activator platform complements the SpCas9-based acti-

vator systems, by allowing the independent activation of

different sets of genes.

The SpCas9 structure also facilitated the rational design of

split-Cas9s (Zetsche et al., 2015; Wright et al., 2015), which

can be further engineered into an inducible system (Zetsche

et al., 2015). Our SaCas9 structure revealed several flexible re-

gions in SaCas9 that could likewise serve as potential split sites

(Figure 7F).We created three versions of a split-SaCas9, and two

of them showed robust cleavage activity at the endogenous

EMX1 target locus (Figure 7G). Using the best split design, we

then tested inducible schemes based on the abscisic acid

(ABA) sensing system (Liang et al., 2011), as well as two versions

of the rapamycin-inducible FKBP/FRB system (Banaszynski

et al., 2005) (Figures 7H and 7I). All three systems were able to

support inducible SaCas9 cleavage activity, demonstrating the

possibility of an inducible, split-SaCas9 design; however, further

optimization is required to increase its efficiency and reduce its

background activity (Figure 7J).

DISCUSSION

The present SaCas9 complex structures allow a detailed struc-

tural comparison of Cas9 orthologs bound to nucleic acids,

thereby illuminating the conserved structural features. SaCas9

and SpCas9 both adopt a bilobed architecture consisting of

the REC and NUC lobes, with the guide:target heteroduplex

accommodated between these lobes. In addition, both Cas9 or-

thologs have a phosphate lock loop, which participates in target

DNA unwinding and heteroduplex formation. We also found that

the HNH and RuvC domains are connected by the L1 and L2

linkers in both SaCas9 and SpCas9. These flexible linker regions

appear to play a role in the inactive-to-active conformational
loop 1 (C), and the basal region of stem loop 1 (D). Hydrogen bonds and salt

larity.

of SaCas9 (E) and SpCas9 (PDB: 4UN3) (F). The SpCas9-specific insertions are
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See also Figure S6.
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the catalytic histidine residues in the HNH domains are shown as spheres. The cleavage sites of the target DNA strands are indicated by magenta circles. In

SpCas9, the disordered region in the L1 linker is indicated by dashed lines.

See also Figure S7.
transition of the HNH domain, although further structural and

functional studies are required to elucidate the activation mech-

anism of Cas9 enzymes.

A comparison of the Cas9 orthologs also revealed the struc-

tural diversity among the CRISPR-Cas9 systems. In both

SaCas9 and SpCas9, the structurally diverse REC and WED do-

mains are responsible for the recognition of sgRNA scaffolds,

which have diverse sequences and structures among the

CRISPR-Cas9 systems, thereby enabling the orthogonal, spe-

cies-specific recognition of the sgRNA scaffolds. In addition,

the PI domains of SaCas9, SpCas9, and AnCas9 share a similar
core fold, but possess different PAM-interacting residues, corre-

sponding to their distinct PAM specificities.

We leveraged our newly obtained structural knowledge to

develop SaCas9-based transcriptional activators and inducible

SaCas9 systems. This opens the door to new possibilities,

including the combinatorial use of SaCas9- and SpCas9-based

genome editing and transcriptional regulation systems, to enable

simultaneous, inducible editing, activation or repression of mul-

tiple endogenous loci. Further applications include the design of

a minimal Cas9 enzyme with tailored PAM specificities as well as

increased specificity for more versatile genome editing.
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EXPERIMENTAL PROCEDURES

Detailed experimental procedures are described in the Supplemental Experi-

mental Procedures.

The full-length S. aureus Cas9 N580A/C946A mutant (residues 1–1053) was

expressed inEscherichia coliRosetta 2 (DE3) (Novagen) and purifiedby chroma-

tography on Ni-NTA Superflow (QIAGEN), Mono S (GE Healthcare), and HiLoad

Superdex 200 16/60 (GE Healthcare) columns. The SeMet-labeled protein was

expressed in E. coli B834 (DE3) (Novagen) and purified using a similar protocol

as that for the native protein. The sgRNAwas transcribed in vitrowithT7RNApo-

lymerase and purified by 8%denaturing (7M urea) PAGE. The target DNAswere

purchased from Sigma-Aldrich. The purified SaCas9 protein wasmixed with the

sgRNA, targetDNAstrand,andnon-targetDNAstrand (molar ratio, 1:1.5:2.3:3.4),

and the SaCas9–sgRNA–target DNA complex was purified by gel filtration

chromatography on a Superdex 200 Increase column (GE Healthcare).

The purified SaCas9–sgRNA–target DNA complex (containing either the

50-TTGAAT-30 PAM or the 50-TTGGGT-30 PAM) was crystallized at 20�C by

the hanging-drop vapor diffusion method. Crystals were obtained by mixing

1 ml of the complex solution (A260 nm, 15) and 1 ml of the reservoir solution

(10%–12% PEG 4,000, 0.75 M NaCl, 0.15 M Na2HPO4 and 0.15 M NaN3).

The SeMet-labeled complex (containing the 50-TTGGGT-30 PAM) was crystal-

lized under similar conditions. X-ray diffraction data were collected at 100 K on

the beamlines BL32XU and BL41XU at SPring-8 (Hyogo, Japan). The structure

was determined by the Se-SAD method, using the 3 Å resolution dataset from

the SeMet-labeled crystal. The final models of the 50-TTGAAT-30 PAMcomplex

(2.6 Å resolution) and the 50-TTGGGT-30 PAM complex (2.7 Å resolution) were

refined using the native datasets. Molecular graphics images were prepared

using CueMol (http://www.cuemol.org).

Around 24 hr prior to transfection, HEK293FT cells (Life Technologies) were

seeded into 24-well plates (Corning) at a density of 2.5 3 105 cells/well and

transfected at 70%–80% confluency using Lipofectamine 2000 (Life Technol-

ogies), according to the manufacturer’s recommended protocol. A total of

600 ngDNAwas used for eachwell of the 24-well plate. About 72 hr after trans-

fection, the genomic DNA was extracted, and then the genomic modifications

were examined using the SURVEYOR assay and targeted deep sequencing,

as previously described (Cong et al., 2013).

ACCESSION NUMBERS

The accession numbers for the atomic coordinates of the SaCas9–sgRNA–

target DNA complexes reported in this paper are Protein Data Bank: 5CZZ

(50-TTGAAT-30 PAM) and 5AXW (50-TTGGGT-30 PAM).
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Scale bar, 100 mm.
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(G) Cleavage activity of wild-type (WT) SaCas9 and the three different auto-asse

(H and I) Schematic of the inducible SaCas9 system. NES, nuclear export signal
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