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INTRODUCTION: Human genetic studies have re-
vealed long lists of genes and loci associated
with risk for many diseases and disorders,
but to systematically evaluate their pheno-
typic effects remains challenging.Without any
a priori knowledge, these risk genes could
affect any cellular processes in any cell type
or tissue, which creates an enormous search
space for identifying possible downstream
effects. New high-throughput approaches are
needed to functionally dissect these large gene
sets across a spectrum of cell types in vivo.

RATIONALE:Analysis of trio-basedwhole-exome
sequencing has implicated a large number of
de novo loss-of-function variants that con-
tribute to autism spectrum disorder and devel-
opmental delay (ASD/ND) risk. Such de novo
variants often have large effect sizes, thus
providing a key entry point for mechanistic
studies. We have developed in vivo Perturb-
Seq to allow simultaneous assessment of the
individual phenotypes of a panel of such risk
genes in the context of the developingmouse
brain.

RESULTS: Using CRISPR-Cas9, we introduced
frameshiftmutations in 35 ASD/ND risk genes
in pools, within the developing mouse neo-
cortex in utero, followed by single-cell tran-
scriptomic analysis of perturbed cells from the
early postnatal brain. We analyzed five broad
cell classes—cortical projection neurons, cortical
inhibitory neurons, astrocytes, oligodendro-
cytes, and microglia—and selected cells that
had received only single perturbations. Using
weighted gene correlation network analysis,
we identified 14 covarying gene modules that
represent transcriptional programs expressed in
different classes of cortical cells.
These modules included both those affect-

ing common biological processes across multi-
ple cell subsets and others representing cell
type–specific features restricted to certain sub-
sets. We estimated the effect size of each per-
turbation on each of the 14 gene modules by
fitting a joint linear regressionmodel, estimat-
ing how module gene expression in cells from
each perturbation group deviated from their
expression level in internal control cells. Per-
turbations in nine ASD/ND genes had signif-

icant effects across five modules across four
cell classes, including cortical projection neu-
rons, cortical inhibitory neurons, astrocytes, and
oligodendrocytes. Some of these results were
validated by using a single-perturbationmodel
as well as a germline-modified mutant mouse
model.
To establish whether the perturbation-

associated gene modules identified in the
mouse cerebral cortex are relevant to human
biology andASD/NDpathology, we performed
co-analyses of data from ASD and control
human brains and human cerebral organoids.
Both gene expression and gene covariation
(“modularity”) of several of the gene modules
identified in the mouse Perturb-Seq analysis
are conserved in human brain tissue. Compar-
ison with single-cell data from ASD patients
showed overlap in both affected cell types and
transcriptomic phenotypes.

CONCLUSION: In vivo Perturb-Seq can serve as
a scalable tool for systems genetic studies of
large gene panels to reveal their cell-intrinsic
functions at single-cell resolution in complex
tissues. In this work, we demonstrated the ap-
plication of in vivo Perturb-Seq to ASD/ND risk
genes in the developing brain. Thismethod can
be applied across diverse diseases and tissues in
the intact organism.▪
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Vahbiz Jokhi2, Elise Robinson3,5,7, Paul Oyler2, Nathan Curry2, Giulio Deangeli2, Simona Lodato8,
Joshua Z. Levin3,5,6, Aviv Regev3,6,9,10*†‡, Feng Zhang3,4,10*†, Paola Arlotta2,3,5*†

The number of disease risk genes and loci identified through human genetic studies far outstrips the
capacity to systematically study their functions. We applied a scalable genetic screening approach, in
vivo Perturb-Seq, to functionally evaluate 35 autism spectrum disorder/neurodevelopmental delay
(ASD/ND) de novo loss-of-function risk genes. Using CRISPR-Cas9, we introduced frameshift mutations
in these risk genes in pools, within the developing mouse brain in utero, followed by single-cell RNA-
sequencing of perturbed cells in the postnatal brain. We identified cell type–specific and evolutionarily
conserved gene modules from both neuronal and glial cell classes. Recurrent gene modules and cell
types are affected across this cohort of perturbations, representing key cellular effects across sets of
ASD/ND risk genes. In vivo Perturb-Seq allows us to investigate how diverse mutations affect cell
types and states in the developing organism.

H
uman genetic studies have uncovered
associations between genetic variants
in tens of thousands of loci and complex
human diseases (1–3). In particular, anal-
ysis of trio-based whole-exome sequenc-

ing (WES) has implicated a large number of
de novo loss-of-function variants that con-
tribute to the risk of neurodevelopmental
pathologies, including autism spectrum dis-
orders and neurodevelopmental delay (ASD/
ND) (4, 5). Compared with common variants
identified through genome-wide association
studies (GWASs), such de novo risk variants
often have large effect sizes, are highly pene-
trant, and occur within a gene’s coding region,
thus providing a crucial entry point for disease
modeling and mechanistic studies.
However, a major challenge remains in iden-

tifying the point of action of each of thesemany
risk genes. For example, ASD/ND comprises
a broad collection of neurodevelopmental

disorders with highly heterogeneous genetic
contributions, including hundreds of highly
penetrant de novo risk variant genes (6). More-
over, there is substantial diversity in the func-
tion of the gene products that these genes
encode, precluding a clear a priori prediction
of the underlying brain cell types, develop-
mental processes, and molecular pathways af-
fected during neurodevelopment (7). Few of
these risk genes have been studied in animal
or cellular models, and thus, their function
during brain development remains poorly
defined. Because of the labor-intensive and
time-consuming nature of generating and ana-
lyzing individual knockout animal models for
functional investigation, it is crucial to devel-
op phenotyping methods that are scalable,
general-purpose, high-resolution, and high-
content to identify tissue- and cell type–specific
effects of genetic perturbations in vivo.
To address these challenges, we developed

in vivo Perturb-Seq, a scalable genetic screen,
to investigate the function of large sets of genes
at single-cell resolution in complex tissue in vivo.
We applied in vivo Perturb-Seq in utero in mice
to study the effect of a panel of ASD/ND risk
genes on brain development.

In vivo Perturb-Seq to assess the function
of ASD/ND risk genes

We chose ASD/ND candidate genes from a re-
cently published WES study of 11,986 cases
with 6430 ASD/ND probands (table S1) (4).
We initially prioritized 38 candidate genes
(of which 35 were retained in the final anal-
ysis) (table S1) that harbor de novo variants
specific to ASD/ND patients within the broader
class of neurodevelopmental disability (fig.
S1A and table S1). These ASD/ND risk genes

are expressed in human brain tissue, as as-
sessed by the BrainSpan bulk RNA-seq dataset
(8); some are highly expressed at embryonic
stages, and others are highly expressed from
early postnatal to adult stages (fig. S1B). On
the basis of mouse cortical single-cell RNA-
sequencing (scRNA-seq) data, the orthologs
of these ASD/ND risk genes are expressed in
diverse cell types (fig. S2) [embryonic day 18.5
(E18.5) data are from the 10x Genomics public
dataset (9); P7 data are from this work]. Thus,
these ASD/ND genes could in principle act
in many different cell types and temporal
frames, requiring scalable methods to test
gene function across a range of cell types and
developmental events.
For in vivo Perturb-Seq, we used Cas9-mediated

genome editing (10–12) in a pooled approach
to introducemutations in each of the ASD/ND
risk geneswithin progenitor cells of themouse
developing forebrain in utero, followed by
scRNA-seq at P7 to read out both a barcode
identifying the perturbation and the expres-
sion profile of the perturbed cells (Fig. 1A).
Specifically, we used a transgenic mouse line
that constitutively expresses Cas9 (13) and
delivered pools of guide RNAs (gRNAs) target-
ing the different risk genes through lentiviral
infection into the lateral ventricles of the de-
veloping embryo in utero. Each lentiviral vector
contained two different gRNAs targeting the
5′-end coding exons of one ASD/ND gene (to
enhance knockout efficiency) and a blue flu-
orescent protein (BFP) reporter with a distinct
barcode corresponding to the perturbation
identity (10–12). To minimize vector recombi-
nation, we packaged each lentivirus separately
and then pooled viruses at equal titers.
We injected a pool of lentiviruses with equal

gRNA representation into the ventricles of the
developing forebrain at E12.5 (Fig. 1A). In this
approach, lentiviral injection leads to infec-
tion of neural progenitors lining the lateral
ventricle of the developing forebrain, including
progenitors of the neocortex and the ganglionic
eminences. Because lentiviral vectors inte-
grate into the genome, the progeny of the in-
fected progenitors are labeled by BFP and carry
a perturbation barcode corresponding to the
target ASD/ND gene.
Both immunohistochemical analysis and

scRNA-seq of BFP+ cells at P7 showed that the
Perturb-Seq vectors were expressed across a
variety of neuronal and glial cell types in the
cortex (Fig. 1, B and C, and fig. S3, A and B).
Although microglia originate mostly from out-
side the targeted germinal zones, we detected
lentiviral vector expression in cortical microg-
lia, indicated by the presence of BFP as well
as perturbation barcode expression, across
multiple individual experiments (fig. S4, E
and F). Although it is unclear how microglia
are labeled in our experimental procedure,
it is possible that the in utero injection could
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have led to either local lesions that recruited
and expanded the number of microglia along
the injection tract or that microglia were la-
beled within the parenchyma along the same
tract. Overall, our approach allowed us to ex-

amine the effects of each perturbation across
a wide range of cell types from distinct brain
regions (such as cortical projection neurons,
interneurons, astroglia, and oligodendrog-
lia), and under sparse labeling conditions in

which less than 0.1% of cells in the cortex
were perturbed, and thus development of in-
dividual perturbed cells was highly unlikely
to be affected by perturbed neighboring cells
(fig. S3, A to C).
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Fig. 1. In vivo Perturb-Seq to investigate functions of a panel of ASD/ND
risk genes harboring de novo variants. (A) Schematics of the in vivo Perturb-
Seq platform, which introduces mutations in individual genes in utero at E12.5,
followed by transcriptomic profiling of the cellular progeny of these perturbed
cells at P7 by means of scRNA-seq. (B) t-distributed stochastic neighbor
embedding (t-SNE) of five major cell populations identified in the Perturb-Seq
cells. (C) In vivo Perturb-Seq lentiviral vector carrying an mCherry reporter drives

detectable expression within 24 hours and can sparsely infect brain cells across
many brain regions. Scale bar, 1000 mm. (D) Cell-type analysis of in vivo Perturb-
Seq of ASD/ND de novo risk genes. Canonical marker genes were used to
identify (left) major cell clusters and (right) cell-type distribution in each
perturbation group. Negative control (GFP) is indicated with a black rectangle.
(E) t-SNEs showing the subclusters of each of the five major cell types, identified
by reclustering each cell type separately.
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In vivo Perturb-Seq targets diverse cell types
without affecting overall cell type composition
We performed the experiment with 18 differ-
ent cohorts of pregnant mice, for a total of
163 embryos, each subjected to the entire pool
of perturbations. We microdissected and dis-
sociated cortical tissues at P7, enriched the per-
turbed cells by means of fluorescence-activated
cell sorting (FACS), and used droplet-based
scRNA-seq to obtain each cell’s expression
profile along with its perturbation barcode.
The cell survival rate after FACS was 78%, and
we confirmed a 40 to 70% frameshift insertion
or deletion for each gRNA target among the
infected cells (fig. S3, D and E).
This multiplexed experimental design al-

lowed us to test the cell-autonomous effect
of all perturbations against the effect of a neg-
ative control construct targeting the endoge-
nous green fluorescent protein (GFP) in the
Rosa26 locus, thus controlling for effects re-
lated to viral infection and DNA double-strand
break, among other confounders. To minimize
batch-dependent variation, the control construct
was included in the same pool as that of the
perturbation vectors (fig. S3F). After quality
control, we retained for further analysis a total
of 46,770 neocortical cells across 17 high-
quality experimental batches. We partitioned
the cells into major cell classes using Louvain
clustering (14) and annotated them by known
marker gene expression (Fig. 1D) (15, 16).
We focused on five broad cell populations

from this cortical dataset for downstream
analysis: cortical projection neurons (8450 cells),
cortical inhibitory neurons (5532 cells), astro-
cytes (9526 cells), oligodendrocytes (4279 cells),
and microglia/macrophages (8070 cells)
(thus excluding vascular, endothelial, and con-
taminant hippocampal and striatal cells). We
further filtered out some remaining low-quality
cells in these five major cell classes, retaining
35,857 high-quality cells (median of 2436 de-
tected genes per cell overall, and a median of
4084 genes in the projection neuron cluster,
as expected from their large size and known
high RNA content) (fig. S3G). We subclustered
each of the five major cell types separately and
annotated biologically meaningful subclus-
ters (Fig. 1E and fig. S6).
From inspecting the perturbation barcodes

from the lentiviral constructs, 92% of the cells
(33,231 cells) in these five major cell classes had
at least one perturbation read assigned to
them, and 50% had barcodes for a single gene
(18,044 cells) (fig. S4, A to C), reflecting the low
multiplicity of infection (fig. S4D). Because it is
rare for multiple ASD/ND loss-of-function risk
gene mutations to co-occur in patients, we
focused on the 18,044 cells that carried a sin-
gle perturbation. We found a median of 338
cells per perturbation. After excluding pertur-
bations with <70 perturbed cells, we retained
35 ASD/ND risk gene perturbations. BFP from

the lentiviral vector was robustly detected as
one of the most highly expressed genes in all
retained cells (fig. S4E). The BFP detection
rate in each cell type correlated with the av-
erage number of genes detected (fig. S4F), fur-
ther supporting the reliability of the readout.
ASD/ND risk gene perturbations had a very

modest effect on the presence and propor-
tions of these five major cell types relative to
the negative control (targeting the GFP gene).
Only loss of Dyrk1a had a significant effect on
cell type composition, increasing the proportion
of oligodendrocytes and reducing the proportion
of microglia and macrophages [false discovery
rate (FDR)–corrected P < 0.05 using Poisson
regression (17)] (Fig. 1D and fig. S5).

Covarying gene modules associate
with cell states

To assess whether ASD/ND genetic pertur-
bations caused molecular changes and alter-
ations in cell states, we first sought to define
gene modules that covary within each of the
five broad cell classes. As previous work has
shown (10–12, 18), focusing on gene modules
instead of individual genes provides more
statistical power to detect biologically mean-
ingful perturbation effects by using fewer cells
than would be required for single-gene–level
analysis and can capture diversity both within
and across cell types.
We first tested whether the expression of

known Gene Ontology (GO) gene sets (19) was
affected by calculating a gene-set expression
score for each cell and fitting a linear regres-
sion model to this score. After correcting for
multiple hypothesis testing, no GO termswere
significantly altered by any perturbation (table
S8). However, this approach is limited by the
large number of tests performed (one test per
GO term per cell type per perturbation, for a
total of 510,265 tests), as well as the limited
number of GO terms relevant to the develop-
ing cortex.
We therefore sought to identify gene mod-

ules de novo in our data using two approaches:
weighted gene correlation network analysis
(WGCNA), which identifies “modules” of genes
with correlated expression, and structural topic
modeling (STM), which attempts to reduce the
dimensionality of the gene expression matrix
and returns “topics” corresponding to the com-
ponents of this representation (Fig. 2A, figs.
S6 to S8, and tables S2 and S3) (20, 21). We
performed these analyses for each of the five
major cell clusters separately, to better identify
effects associated with specific cell types; our
nomenclature for the modules incorporates
the cell cluster analysis it is derived from (for
example, PN1 represents a module identified
through analysis of projection neurons). Each
of these analyses used the full set of perturba-
tions to identify effects shared across multiple
perturbations.We focused our subsequent anal-

ysis on the 14 modules identified with WGCNA
because they were highly correlated with one
or more topics returned by STM (fig. S7).
The 14 WGCNA modules comprised two

broad categories. Some reflected common
biological processes and were present across
multiple cell subsets (such as cell cycle, dif-
ferentiation, and maturation). For example,
module PN2 is associated with genes involved
in neurite development and varied across cells
in multiple projection neuron subclusters (fig.
S6A). Others represented cell type–specific fea-
tures specific to only some subsets (such as
subcluster-specific features of a neuronal
subtype). For example, module PN1 is a mod-
ule associated with two defined subclusters
of neurons of layer 4 and layer 5 (fig. S6A).

ASD/ND gene perturbations affect cell states
in multiple cell classes

Because the WGCNA analysis is expected to
recover gene modules associated with many
kinds of variation across the data, we next
tested the association of each risk gene per-
turbation with the 14 individual WGCNA gene
modules. We estimated the effect size of each
perturbation on each gene module by fitting
a joint linear regression model, estimating
howmodule gene expression in cells from each
perturbation group deviated from the GFP
control cells (Fig. 2, A and B). To ensure that
no single perturbation or batch dominated
the linear model, we down-sampled the cells
in each cell category so that no perturbation
had more than two times the median number
of cells over all perturbations. This linear re-
gression analysis was performed on mean-
centered and standard deviation–scaled module
scores, so effect sizes can be interpreted in
terms of standard deviations from the popu-
lation mean (Fig. 2B). Our modeling approach
assumes that module expression in individual
cells is independent after conditioning on the
experimental batch and that noise is normally
distributed. To evaluate the effects of these as-
sumptions, we also compared alternative ap-
proaches, including a linear mixed model–based
approach and a permutation-based approach
(fig. S9 and table S9).
Perturbations in nine ASD/NDgenes (Adnp,

Ank2, Ash1l, Chd8, Gatad2b, Pogz, Scn2a1,
Stard9, and Upf3b) had significant effects
across five modules (compared with the
GFP control, FDR-corrected P < 0.05) (Fig.
2B, indicated circles, and table S4): a module
associated with neurons of layers 4 and 5
(PN1, affected by perturbations in Adnp,
Ash1l, Scn2a1, and Stard9); modules rep-
resenting two distinct homeostatic signatures
in astrocytes (Astro1 affected by perturbation
of Scn2a1, and Astro3 affected by perturba-
tions of Chd8, Pogz, and Upf3b); a module
associated with oligodendrocyte progenitor
cells (ODC1, affected by perturbations of Chd8
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and Gatad2b); and a module associated with
Ndnf+ interneurons (IN1, affected by the per-
turbation of Ank2) (Fig. 2C and fig. S6).
The oligodendrocyte progenitor module

(ODC1) also had a significant amount of its

variation across the oligodendrocyte cell clus-
ter explained by the perturbation state overall
[van der Waerden test, a nonparametric alter-
native to analysis of variance (ANOVA), FDR-
corrected P < 0.05] (fig. S5C), suggesting that

this module represents most shared effects across
different perturbed genes. Collectively, the data
indicate that a selected group of perturba-
tions was able to affect recurrent gene mod-
ules with cell-type specificity and point to some
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Fig. 2. In vivo Perturb-Seq reveals cell type–specific effects of ASD/ND
risk gene perturbations. (A) Schematic illustration of the Perturb-Seq analysis
pipeline. (B) ASD/ND risk gene perturbation effects in different WGCNA gene
modules compared with GFP controls. Dot color corresponds to effect size, and
dot size corresponds to negative base 10 log(P value). Module gene lists are
presented in table S2. P values were calculated from linear modeling, and Padj

was calculated by means of Benjamini and Hochberg FDR correction. (C) The
four cell types and five gene modules that were altered by ASD risk gene
perturbations. (Top) Subcluster t-SNE of each cell class (repeated from
Fig. 1E for ease of comparison). (Bottom) Feature plots of gene module
expression scores and the top correlated genes within each module across
the relevant cell class.
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convergent effects across diverse ASD/ND
risk genes.

Single perturbation of Ank2 confirms
Perturb-Seq effect on an interneuron
gene module

In our multiplex in vivo Perturb-Seq results,
Ank2 perturbation led to increased expres-
sion of an interneuron module (IN1) (FDR-
corrected P < 0.05) (fig. S10). This module was
strongly correlated with a subcluster of inhibi-
tory interneurons expressing Ndnf (fig. S10, C
and D) and contains genes such as Kcnq5 (a
voltage-gated potassium channel) and Gabbr2
[g-aminobutyric acid (GABA) receptor sub-
unit] (fig. S6B and table S2). To validate our
finding from the pooled Perturb-Seq exper-
iment, we performed a single perturbation
targeting either Ank2 or GFP (control), fol-
lowed by scRNA-seq of neocortical cells at P7,
resulting in 2943 and 1716 high-quality cells,
respectively.
The individual perturbation experiment con-

firmed the results from the pooled Perturb-
Seq screen. Ank2-perturbed cells were present
across all cell types, and overall proportions of
cells were not significantly changed (fig. S10B).
Within the Ndnf+ interneurons, Ank2 pertur-
bation led to up-regulation of the IN1 module
(FDR-corrected P < 0.05) (fig. S10E), confirm-
ing the Perturb-Seq result. This finding indi-
cates that multiplexing perturbations in the
pooled approach does not significantly dis-
tort the results observed for an individually
perturbed gene.
Ank2 encodes an ankyrin protein and is

expressed broadly in excitatory and inhibi-
tory neurons as well as glial cells in the brain
(22). Studies examining Ank2 loss of function
suggest that it is involved in axonal morphol-
ogy, connectivity, and calcium signaling in ex-
citatory neurons (23–26). Our Perturb-Seq data
suggests a role of Ank2 in the Ndnf+ inter-
neuron subtype during cortical development,
in addition to its known roles in excitatory
neurons.

The ASD/ND risk genes Chd8
and Gatad2b alter gene modules
in oligodendrocyte progenitors

In our Perturb-Seq experiment, Chd8 and
Gatad2b perturbations significantly decreased
the expression of theODC1module in the oligo-
dendrocyte cluster (FDR-corrected P < 0.05)
[Fig. 3, A to D; an alternative measurement of
effect size is provided in fig. S11A, estimated
by log transcripts per million (TPM) gene ex-
pression differences]. The ODC1 module is
highly expressed in cycling cells and oligo-
dendrocyte precursor cells (OPCs) and lowly
expressed in committed oligodendrocyte pro-
genitor cells (COPs) and newly formed oligo-
dendrocytes (NFOLs), suggesting that this
module is linked to oligodendrocytematuration

(Fig. 3A) and therefore that perturbation in
Chd8 and Gatad2b might alter oligodendro-
cyte maturation. This is consistent with recent
reports that Chd8 loss of function potentiates
an impaired OPC development phenotype
caused by deletion of Chd7 (27).
We further investigated and validated this

result by examining oligodendrocyte develop-
ment in a Chd8 germline heterozygous mu-
tant model [because homozygous mutation is
embryonic lethal (28)], using several orthog-
onal methods. First, we used in situ hybrid-
ization for two canonical OPC markers that
are involved in fate specification, Cspg4 (a
member of the ODC1 module) and Pdgfra
(platelet-derived growth factor receptor A).
Both were down-regulated in P7 Chd8+/− cortex
(Fig. 3E and fig. S11, B to D), which is consistent
with our in vivo Perturb-Seq results. Second,
we used immunohistochemistry to examine a
later developmental time point, P11. OPC cell
number (such as PDGFRA+ cells) did not show
significant differences between the wild-type
and Chd8+/− littermates, which is also consistent
with in vivo Perturb-Seq; however, cells posi-
tive for myelin basic protein (MBP), a marker
of myelinating oligodendrocytes, were in-
creased in number and displayed increased
MBP amounts in the Chd8+/− mutant (FDR-
corrected P < 0.05, nonparametric ANOVA
test) (Fig. 3F). In combination with the Perturb-
Seq result that showed reduction in the
signature of oligodendrocyte progenitor-
expressed ODC1 module in Chd8-perturbed
cells, this suggests that Chd8 perturbation
may result in acceleration of the increase in
MBP amounts that occurs postnatally. These
data further demonstrate that in vivo Perturb-
Seq has the power to identify cell type–specific
molecular changes similar to those observed
in a single-gene, germline-modified mouse
model.

Perturb-Seq gene modules are conserved
between human and mouse

To establish whether the perturbed genemod-
ules identified in the mouse cerebral cortex
are conserved in human cells, we examined
the expression of each module across multiple
scRNA-seq and single-nuclei RNA-seq (snRNA-
seq) datasets fromhuman tissues: adult human
cortex (29), ASD donor cortex with matched
controls (31), fetal human cortex (31), and
3- and 6-month-old human brain organoids
(Fig. 4, A and B) (32). In the fetal brain and the
3-month-old brain organoid samples, glial cell
types were sparsely represented owing to the
early developmental stages of the samples (fig.
S12A). We identified human genes that had
1:1 orthologs to the mouse genes in each
module and asked whether the modules were
conserved, using two metrics: whether the or-
thologous genes were also expressed in the
corresponding cell type in the human data-

sets and whether the expression of the genes
in each module covaried across single cells
(as estimated from correlation), reflecting the
degree of “modularity” of these mouse gene
programs in humans.
The expression of each module was largely

conserved in all human datasets, with differ-
ent modules showing distinct levels of con-
servation of expression in each dataset (Fig.
4A). Some modules—such as PN1, PN2, and
PN5—displayed high levels of conservation
of expression (with at least 75% of the genes
in these modules being expressed by at least
5% of cells in the corresponding associated
cell type) across all datasets. The proportions
of the genes expressed in the corresponding
cell types in human tissues were generally
lower than in mouse tissues (fig. S12B).
We further calculated whether the covaria-

tion of expression of the genes in each mod-
ule (their “modularity”) was also comparable
in humans. To do so, for each module and each
dataset we calculated the average pairwise
expression correlation coefficient between the
genes in a given module and compared it with
a module-specific null-distribution based on
random gene sets with similar expression
levels, to calculate both a P value for the cor-
relation of our modules and a normalized cor-
relation coefficient. Out of 14 modules, eight
showed greater intramodule correlation than
that of a comparable random gene set in the
adult human brain dataset from Hodge et al.
(29) (Fig. 4B). Correlation also increased with
the age of the human samples across brain re-
gions of the BrainSpan dataset (Fig. 4, C to E,
and fig. S13) (8). As a control, we used the
same approach to calculate the expression and
modularity of each gene module in nonasso-
ciated cell types. We found that the modularity
was decreased in nonassociated cell types (fig.
S12, D and E), reflected by both the proportion
of comparisons with significant correlation
and by the strength of the significant correla-
tions, suggesting that our modules reflect cell
type–specific effects.
Altogether, our results suggest that expres-

sion and modularity of most gene modules in
the mouse are conserved in human brain tis-
sue, pointing at potential shared functions and
further suggesting that processes identified
as affected in our Perturb-Seq experiments
are relevant to biological processes that may
be developmentally regulated in the human
brain.

Mouse Perturb-Seq results are correlated
with expression changes in ASD patient
brain tissues

Last, we explored whether the effects observed
in mouse Perturb-Seq may be similar to changes
observed in post mortem brains of ASD pa-
tients. To this end, we compared our data with a
snRNA-seq dataset of post mortem ASD brain
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Fig. 3. Perturbation effect in oligodendrocytes and validation in the Chd8+/−

mouse model. (A) t-SNE of oligodendrocyte subtypes from the Perturb-Seq data.
(B) The ODC1 gene module expression score in (left) each celland (right)
in each subcluster. (C) Average expression of genes in the ODC1 gene module (by
row) in each perturbation group (by column), scaled by row. (D) Effect size
of each perturbation on the ODC1 gene module compared with the control group.
The perturbation effects of the different genes present a continuous gradient.
Error bars represent 95% confidence intervals. (E) In situ hybridization for
Cspg4, a gene in module ODC1 that is a known marker of oligodendrocyte
precursor cells (OPC), in the somatosensory cortex of P7 Chd8+/− and wild-type

littermates. The bottom images are higher magnifications of top images, and the
right images are higher magnifications for each cell. (Right) Quantification of
Cspg4 expression in P7 cortex of Chd8+/− and wild-type littermates. Each dot
represents the gene expression value from one cell; error bars represent
standard error of the mean (n = 3 animals per genotype). Scale bars, 1000 mm
(bottom left), 100 mm (top left), and 10 mm (right), respectively. (F) Immuno-
histochemistry for PDGFRA and MBP (markers for immature OPC and mature
oligodendrocytes, respectively), PDGFRA+ cell counts, and distribution of MBP
expression, in the somatosensory cortex of P11 Chd8+/− animals and wild-type
littermates. Scale bars, 1000 mm (left) and 250 mm (right), respectively.
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samples (30) and bulk RNA-seq of post mortem
psychiatric disorder brain samples from the
PsychEncode project (33).
Using a dataset of snRNA-seq profiles from

15 ASD donors and 16 controls (30), we de-
fined differentially expressed (DE) genes in
each cell type using a statistically conserva-
tive pseudobulk-based analysis with DESeq2
(34, 35), correcting for age, sex, and patient-
to-patient variability. We identified genes that
were differentially expressed between patients
and controls in at least one of three major cell
types (inhibitory neurons, excitatory neurons,
or oligodendrocytes) with FDR < 0.2 and se-
lected those that have 1:1 orthologs in mice,
resulting in 14 genes (Fig. 4F and table S10).
We then compared these 14 genes with our

Perturb-Seq data and asked whether these
ASD-patient DE genes were also affected by the
35 ASD risk gene perturbations in our dataset.
We aggregated the effects of all 35 perturba-
tions and asked whether the aggregated gene
expression changes agreed more strongly with
the gene expression changes in the ASD pa-
tient data than would be expected by chance.
For each ASD patient DE gene, we took its
mouse ortholog and calculated the median fold
change of expression (logFC) over all perturba-
tions in the Perturb-Seq data. We then com-
pared this logFC with the corresponding logFC
in the ASD patient data and generated an
agreement score for each gene, defined as a
high median logFC and a similar direction of
change as in the human data. We binned
genes by their expression and compared each
ASD patient DE gene with others in the same
bin to extract P values (with FDR correction).
From this analysis, we identified two genes,
SST in interneurons and NRN1 in excitatory
neurons, both of which showed decreased
expression in ASD patients and were likewise
significantly decreased in expression across
our panel of perturbations (FDR < 0.1), albeit
with different effect sizes (Fig. 4F and table
S10). This indicates that despite the different
developmental stages, high clinical heteroge-
neity in ASD, and patient genetic diversity,
genes and cell types can be identified as af-
fected in both our analyses and in studies of
human patient tissue.

We also analyzed the 14 gene modules re-
ported in the PsychEncode study of 700 bulk
RNA-seq samples of human cortex from a
panel of psychiatric disorders (33). Of the
14 modules previously reported to be altered
in the ASD patients in the PsychEncode analy-
sis, six were also significantly affected across
eight of our ASD/ND risk gene perturbations
(fig. S14). Although these analyses are limited
by the relatively few available datasets of ASD
patient brain samples, they suggest that our
Perturb-Seq experiments can identify gene
program abnormalities seen in human ASD
patients.

Discussion

In vivo Perturb-Seq can serve as a scalable tool
for systems genetic studies of large gene panels
to reveal their cell-intrinsic functions at single-
cell resolution in complex tissues. In this work,
we demonstrated the application of in vivo
Perturb-Seq to ASD/ND risk genes in the de-
veloping brain; this method can be applied
across diverse diseases and tissues.
ASD/ND affects brain function profoundly,

but its cellular and molecular substrates are
not yet defined. The large number of highly
penetrant de novo risk genes implicated through
human genetic studies offers an entry point to
identify the cell types, developmental events,
and mechanisms underlying ASD/ND. How-
ever, this requires scalable methods to define
the function of risk-associated genes with cell-
type specificity.UsingPerturb-Seq to functionally
test large gene sets in the developing embryo,
we observed gene expression changes linked
to ASD/ND genes in different cell types and
processes. Within the power of the analysis
that can be achieved with the number of cells
that can be reasonably sequenced, we found that
some recurrent modules are affected across
more than oneASD/ND risk gene perturbation.
It is likely that this represents an underestima-
tion of the number of convergent modules
across perturbations thatmight be revealed by
larger-scale experiments using greater num-
bers of cells.
We were particularly interested in validat-

ing the observed effects of Ank2 perturbation
because of its known roles in the brain. Ank2

encodes an ankyrin protein and is expressed
broadly in excitatory and inhibitory neurons
as well as glial cells in the brain (22). Ankyrin
homologs interact with ion channels in many
neuronal types, and Ankyrin-G has been shown
to stabilize GABAergic synapses (36). The roles
of Ank2 in the brain have largely been studied
in the context of excitatory neurons. Ank2 loss
of function results in hypoplasia of the corpus
callosum and pyramidal tract, and optic nerve
degeneration (23)—suggesting that it is required
in the maintenance of premyelinated axons
in excitatory neurons in early neurodevelop-
ment. Ank2 mutants showed misregulation
of intracellular calcium homeostasis and cal-
cium channel expression in excitatory neu-
rons (24, 25), as well as increased axonal
branching and ectopic connectivity (26).
Our Perturb-Seq data suggests an additional
role of Ank2 in interneurons expressing the
Ndnf gene along with its known roles in ex-
citatory neurons.
In addition to neurons, oligodendrocytes

and astrocytes were also affected by several
perturbations. Oligodendrocytes modulate
and consolidate neural circuit refinement,
and abnormalmaturation of oligodendrocytes
may be linked to long-lasting changes in neu-
ral wiring and brain function (37). One of
the risk genes, Chd8, encodes a protein that
binds directly to b-catenin to recruit histone
proteins and negatively regulates the Wnt
signaling pathway, a critical regulator of neu-
ral progenitor proliferation and differenti-
ation in the forebrain (38–41). Our results
showed that Chd8modulates gene modules
for oligodendrocyte differentiation and mat-
uration, which is consistent with previously
reported chromatin immunoprecipitation–
sequencing (ChIP-Seq) results showing that
CHD8 interacts directly with OPC matura-
tion genes at perinatal stages of development
(27, 42).
Although we focused on the perinatal neo-

cortex in this study, in vivo Perturb-Seq can
be applied to study gene functions systemat-
ically across other tissues and developmental
ages, to reveal tissue-specific as well as broad-
ly distributed gene functions. This approach
can uncover both the impact of individual
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Fig. 4. Cell type–specific gene modules from Perturb-Seq are conserved in
developing human brains. (A) Percent of genes with a human ortholog
expressed in >5% of cells of the associated cell type in scRNA-seq datasets from
the human brain or human brain organoids. (B) Normalized average pairwise
correlation of gene expression within each gene module in the human brain or
human brain organoids. Correlation values were normalized to the mean
correlation from the background distribution and divided by the standard
deviation of the background distribution. Correlations are shown for modules
with at least four genes after filtering out genes expressed in <5% of cells.
Bars represent 95% confidence intervals. Red color represents statistical
significance (FDR < 0.05). (C) Expression of module PN3 over developmental
time in human brain tissues across regions (BrainSpan data). (D) Expression of

each module over developmental time in human primary somatosensory cortex
S1C (BrainSpan). (E) Distribution of the Spearman correlation of module
expression with age in human brain data over various brain regions (BrainSpan).
(F) Differential gene expression analysis of human prefrontal cortical samples
from ASD donors and controls. (Left) Expression of DE genes across cell types
(color bars) from Velmeshev et al. (30) (rows) in the Perturb-Seq data across
a panel of ASD/ND risk genes (columns). (Right) DE gene expression changes in
Perturb-Seq data (black dots; each dot indicates an ASD/ND risk gene
perturbation) compared with DE values for the 14 genes found to be DE in ASD
patients in the Velmeshev et al. dataset (30) (FDR < 0.2) (red dots). The two
highlighted genes, SST and NRN1, showed decreased expression in the Perturb-
Seq data (FDR < 0.1), which is consistent with the ASD patient dataset.

RESEARCH | RESEARCH ARTICLE
on January 27, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


disease-associated genes and of combina-
tions of genes and the overall set of processes
that they affect. Our findings underscore the
importance of using single-cell profiles as a
rich, comprehensive, and interpretable pheno-
typic readout. With advances in other single-
cell profiling approaches [such as single-cell
assay for transposase-accessible chromatin
with high-throughput sequencing (ATAC-seq)
(43), single-cell multi-omics (44), and spatial
genomics (45, 46)], we expect in vivo Perturb-
Seq to be coupled in the near future with di-
verse readouts to better define the function of
disease risk–associated variants, from molec-
ular mechanisms to non–cell autonomous ef-
fects in tissues. Spatial transcriptomics in
particular should be well suited for in vivo
Perturb-Seq and should help uncover non–
cell autonomous effects of perturbations.
In vivo Perturb-Seq can enable discoveries of
pathways and cell types affected in heteroge-
neous genetic pathologies, directing down-
stream studies and informing the development
of refined models for genetic disorders as we
move from genetic variants to function.

Methods summary
In vivo Perturb-Seq experiment

The backbone plasmid contains antiparallel
cassettes of two gRNAs (table S5) under mouse
U6 and human U6 promoters and the EF1a
promoter to express puromycin, BFP, and a
polyadenylated barcode specific to each per-
turbation. Cloning and lentiviral packaging of
the 38 vectors were done individually.
All animal experiments were performed ac-

cording to protocols approved by the Insti-
tutional Animal Care and Use Committees
(IACUC) of Harvard University and of the
Broad Institute of MIT and Harvard. In utero
lentiviral injection into the lateral ventricles
was performed at E12.5 in Cas9 transgenic
mice (13) (4 to 6 months old, Jax 026179), and
each single-cell library was made by com-
bining the BFP+ cells from one to three litters
(4 to 20 animals) of P7 animals harvested on
the same day. Tissue dissociation was performed
with the Papain Dissociation kit (Worthington,
LK003152). The FACS-purified cells were sorted
into cold Hibernate A/B27 medium and sub-
jected to single-cell RNA sequencing library
preparation. Our analysis comprises 17 inde-
pendent libraries of Perturb-Seq cells.
Single-cell RNA-seq libraries were created

by using the Chromium Single Cell 3′ Solution
v2 kit (10x Genomics) following the manufac-
turer’s protocol. Each library was sequenced
with Illumina NextSeq high-output 75-cycle kit
with sequencing saturation above 70%. Dial-
out polymerase chain reaction (PCR) was per-
formed to extract the perturbation barcode in
each cell.
We identified perturbation barcodes by use

of two complementary methods. We first used

the dial-out sequences to create a cell-by-
perturbation UMI (unique molecular identi-
fier) count matrix by means of a modification
of from the original Perturb-Seq work (11).
In addition, we extracted barcode sequences
from the 10x Genomics Cell Ranger bam file.
Reads were then assigned to the perturbation
to which theymapped best. Cell barcodes and
UMIswere extracted, and a cell-by-perturbation
UMI count matrix was created. We then only
kept cells for which either (i) the assigned 10x
and dialout perturbations agreed or (ii) the
cell was assigned to a perturbation by one
method but not assigned to any perturbation
in the other.

Perturb-Seq analysis

UMI count data was loaded into R and pro-
cessed by using the Seurat v 2.2 package (47).
Clusters were assigned to cell types on the basis
of marker genes from the literature, https://
mousebrain.org (15), and https://DropViz.org
(22). We focused only on cells of five key types
(projection neurons, inhibitory neurons, oligo-
dendrocytes, microglia and macrophages, and
astroglia) and removed the rest.
WGCNA and STM were performed for each

cell cluster according to the published pipe-
lines (20, 21). Linear regression was used to
test the relationship between perturbations
and WGCNA gene scores, correcting for batch
and number of genes.

RNA in situ hybridization
and immunohistochemistry

Multiplexed RNAscope fluorescent in situ hy-
bridization and immunohistochemistry was
performed on fixed-frozen tissue. Probes against
the followingmRNAs were used: Pdgfra, Cspg4,
and Fezf2 (ACDBio). The antibodies and di-
lutionswereMouse anti-NeuNantibody (mab377,
1:500; Millipore), Mouse anti-GS antibody (mab302,
1:500; Millipore), Goat anti-Pdgfra antibody
(AF1062, 1:200; R&DSystem), Rabbit Iba1 anti-
body (019-19741, 1:400; Wako), Chicken anti-
GFP antibody (ab16901, 1:500;Millipore),Mouse
anti-Satb2 (ab51502, 1:50; Abcam), Rat anti-
Ctip2 (ab18465, 1:100, Abcam), Rabbit anti-
Sox6 (ab30455, 1:500;Abcam), andRat anti-Mbp
(mab386, 1:100;Millipore).We double-blinded
the staining, imaging, and quantifications.

Analysis of human snRNA-seq
or scRNA-seq data

For each single cell and nucleus human data-
set, the UMI count matrix and metadata were
downloaded and processed with Seurat to
create Seurat objects. Cell types were extracted
from the metadata and combined into more
general cell types, namely Microglia, Astroglia
(including Radial Glia), Inhibitory neurons,
Excitatory neurons, Oligodendrocytes, and
other. For differential expression analysis for
data from Velmeshev et al. (30), we removed

data from all individuals of <12 years of age
and separated prefrontal cortex (PFC) and
anterior cingulate cortex (ACC) regions. For
each cell type in each region, a pseudobulk
profile was constructed, and genes expressed
in <5%of cells or with <10 readswere removed.
DESeq2 v 1.20.0 (34) was then used to perform
differential expression analysis between the
ASD patients and the controls, correcting for
sex and age. We then extracted all genes with
1:1 mouse orthologs (BioMart) and calculated
FDR-corrected P values on these genes for
both the ACC and PFC. Only analysis on the
PFCyielded significant hits,whichare presented
in Fig. 4F.
To compare these results with the Perturb-Seq

data, for each human DE gene, an agreement
score was calculated by taking the absolute val-
ue of its mouse orthologs’ median logFC over
all perturbations (calculated with Limma) and
giving it a positive sign if its direction agreed
with that of the human data, and a negative
sign otherwise. Last, genes were binned by ex-
pression, and P valueswere calculated for each
gene by comparing the agreement scores with
other genes in the same bin.
Detailed procedures for the experiments

and data analyses are described in the supple-
mentary materials.
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In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk
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networks of gene expression in neuronal and glial cells that suggest new functions in ASD-related genes.
ASD candidate genes in multiple mice embryos (see the Perspective by Treutlein and Camp). This method identified 

sequencing system, Perturb-Seq, to knock out 35− applied a gene-editing and single-cellet al.disorders (ASDs), Jin 
effects in specific cells along a developmental trajectory. To study the function of genes implicated in autism spectrum
determine the effects of a single gene. However, such studies may be required to identify pathological gene variants with 

CRISPR targeting in vivo, especially in mammals, can be difficult and time consuming when attempting to
An in vivo analysis of autism risk genes
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